Abstract

We examined the optical properties of a-Si:H/SiO2 multilayer films fabricated by radio-frequency magnetron sputtering for optical bandpass filters (BPFs). Because of the high refractive-index contrast between a-Si:H and SiO2, the total number of layers of an a-Si:H/SiO2 multilayer can be relatively small. We obtained an a-Si:H refractive index of 3.6 at λ = 1550 nm and its extinction coefficient k < 1 × 10-4 and confirmed by Fourier-transform infrared spectroscopy that such small k is influenced by the Si-H bonding in the film. We fabricated a-Si:H/SiO2 BPFs by using in situ optical monitoring. Thermal tuning of a-Si:H/SiO2 BPF upon a silica substrate was also performed, and a thermal tunability coefficient of 0.07 nm/°C was obtained.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hagedorn, A. Lots, P. Pecher, O. Treichel, “Ultra narrow bandpass filters produced by plasma ion assisted deposition,” in Proceedings of Optical Interference Coatings 2001 (Optical Society of America, Washington, D.C., 2001), pp. WA4-1–WA4-3.
  2. G. J. Ockenfuss, N. A. O’Brien, “Ultra-low stress coating process: an enabling technology for extreme performance thin film interference filters,” in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. FA8-1–FA8-3.
    [CrossRef]
  3. R-Y. Tsai, L-C. Kuo, F. C. Ho, “Amorphous silicon and amorphous silicon nitride films prepared by a plasma-enhanced chemical vapor deposition process as optical coating materials,” Appl. Opt. 32, 5561–5566 (1993).
    [CrossRef] [PubMed]
  4. K. Muro, K. Shiraishi, “Poly-Si/SiO2 laminated walk-off polarizer having a beam-splitting angle of more than 20°,” J. Lightwave Technol. 16, 127–133 (1998).
    [CrossRef]
  5. H. Yoda, K. Shiraishi, “Optical wavelength filter using hydrogenated silicon oxide for optical communication,” in Proceedings of the 14th Symposium of the Materials Research Society of Japan, T. Tsurumi, K. Oda, S. Ii, eds. (Materials Research Society of Japan, Tokyo, 2002), paper M2-O04-G.
  6. E. P. Donovan, D. V. Vechten, A. S. F. Kahn, C. A. Carosella, G. K. Hubler, “Near infrared rugate filter fabrication by ion beam assisted deposition of Si(1-x)Nx films,” Appl. Opt. 28, 2940–2944 (1989).
    [CrossRef] [PubMed]
  7. P. L. Swart, P. V. Bulkin, B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997).
    [CrossRef]
  8. G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films,” Phys. Rev. B 28, 3225–3233 (1983).
    [CrossRef]
  9. Y. J. Kim, D. W. Shin, “Compositional analysis of SiO2 optical film fabricated by flame hydrolysis deposition,” J. Ceram. Process. Res. 3, 186–191 (2002).
  10. L. He, T. Inokuma, Y. Kurata, S. Hasegawa, “Vibrational properties of SiO and SiH in amorphous SiOx:H films (0 x 2.0) prepared by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 185, 249–261 (1995).
    [CrossRef]
  11. G. Jennings, L. Bluck, A. Wright, M. Elia, “The use of infrared spectrophotometry for measuring body water spaces,” Clin. Chem. (N.Y.) 45, 1077–1081 (1999).
  12. P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
    [CrossRef]
  13. L. Domash, E. Ma, N. Nemchuk, A. Payne, “Tunable thin film filters,” in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 522–524, paper ThM3.
  14. H. Takahashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995).
    [CrossRef]
  15. K. Takimoto, A. Fukuta, Y. Yanamoto, N. Yoshida, T. Itoh, S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299-302, 314–317 (2002).
    [CrossRef]
  16. G. Cocorullo, F. G. Della Corte, L. Moretti, I. Rendina, A. Rubino, “Measurement of the thermo-optic coefficient of a-Si:H at the wavelength of 1500 nm from room temperature to 200 °C,” J. Non-Cryst. Solids 299-302, 310–313 (2002).
    [CrossRef]

2002

Y. J. Kim, D. W. Shin, “Compositional analysis of SiO2 optical film fabricated by flame hydrolysis deposition,” J. Ceram. Process. Res. 3, 186–191 (2002).

K. Takimoto, A. Fukuta, Y. Yanamoto, N. Yoshida, T. Itoh, S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299-302, 314–317 (2002).
[CrossRef]

G. Cocorullo, F. G. Della Corte, L. Moretti, I. Rendina, A. Rubino, “Measurement of the thermo-optic coefficient of a-Si:H at the wavelength of 1500 nm from room temperature to 200 °C,” J. Non-Cryst. Solids 299-302, 310–313 (2002).
[CrossRef]

1999

G. Jennings, L. Bluck, A. Wright, M. Elia, “The use of infrared spectrophotometry for measuring body water spaces,” Clin. Chem. (N.Y.) 45, 1077–1081 (1999).

1998

1997

P. L. Swart, P. V. Bulkin, B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997).
[CrossRef]

1995

L. He, T. Inokuma, Y. Kurata, S. Hasegawa, “Vibrational properties of SiO and SiH in amorphous SiOx:H films (0 x 2.0) prepared by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 185, 249–261 (1995).
[CrossRef]

H. Takahashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995).
[CrossRef]

1993

1989

1983

G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films,” Phys. Rev. B 28, 3225–3233 (1983).
[CrossRef]

1972

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Bluck, L.

G. Jennings, L. Bluck, A. Wright, M. Elia, “The use of infrared spectrophotometry for measuring body water spaces,” Clin. Chem. (N.Y.) 45, 1077–1081 (1999).

Bousquet, P.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Bulkin, P. V.

P. L. Swart, P. V. Bulkin, B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997).
[CrossRef]

Carosella, C. A.

Chao, S. S.

G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films,” Phys. Rev. B 28, 3225–3233 (1983).
[CrossRef]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, L. Moretti, I. Rendina, A. Rubino, “Measurement of the thermo-optic coefficient of a-Si:H at the wavelength of 1500 nm from room temperature to 200 °C,” J. Non-Cryst. Solids 299-302, 310–313 (2002).
[CrossRef]

Czubatyj, W.

G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films,” Phys. Rev. B 28, 3225–3233 (1983).
[CrossRef]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, L. Moretti, I. Rendina, A. Rubino, “Measurement of the thermo-optic coefficient of a-Si:H at the wavelength of 1500 nm from room temperature to 200 °C,” J. Non-Cryst. Solids 299-302, 310–313 (2002).
[CrossRef]

Domash, L.

L. Domash, E. Ma, N. Nemchuk, A. Payne, “Tunable thin film filters,” in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 522–524, paper ThM3.

Donovan, E. P.

Elia, M.

G. Jennings, L. Bluck, A. Wright, M. Elia, “The use of infrared spectrophotometry for measuring body water spaces,” Clin. Chem. (N.Y.) 45, 1077–1081 (1999).

Fornier, A.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Fukuta, A.

K. Takimoto, A. Fukuta, Y. Yanamoto, N. Yoshida, T. Itoh, S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299-302, 314–317 (2002).
[CrossRef]

Hagedorn, H.

H. Hagedorn, A. Lots, P. Pecher, O. Treichel, “Ultra narrow bandpass filters produced by plasma ion assisted deposition,” in Proceedings of Optical Interference Coatings 2001 (Optical Society of America, Washington, D.C., 2001), pp. WA4-1–WA4-3.

Hasegawa, S.

L. He, T. Inokuma, Y. Kurata, S. Hasegawa, “Vibrational properties of SiO and SiH in amorphous SiOx:H films (0 x 2.0) prepared by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 185, 249–261 (1995).
[CrossRef]

He, L.

L. He, T. Inokuma, Y. Kurata, S. Hasegawa, “Vibrational properties of SiO and SiH in amorphous SiOx:H films (0 x 2.0) prepared by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 185, 249–261 (1995).
[CrossRef]

Ho, F. C.

Hubler, G. K.

Inokuma, T.

L. He, T. Inokuma, Y. Kurata, S. Hasegawa, “Vibrational properties of SiO and SiH in amorphous SiOx:H films (0 x 2.0) prepared by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 185, 249–261 (1995).
[CrossRef]

Itoh, T.

K. Takimoto, A. Fukuta, Y. Yanamoto, N. Yoshida, T. Itoh, S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299-302, 314–317 (2002).
[CrossRef]

Jennings, G.

G. Jennings, L. Bluck, A. Wright, M. Elia, “The use of infrared spectrophotometry for measuring body water spaces,” Clin. Chem. (N.Y.) 45, 1077–1081 (1999).

Kahn, A. S. F.

Kim, Y. J.

Y. J. Kim, D. W. Shin, “Compositional analysis of SiO2 optical film fabricated by flame hydrolysis deposition,” J. Ceram. Process. Res. 3, 186–191 (2002).

Kowalczyk, R.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Kuo, L-C.

Kurata, Y.

L. He, T. Inokuma, Y. Kurata, S. Hasegawa, “Vibrational properties of SiO and SiH in amorphous SiOx:H films (0 x 2.0) prepared by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 185, 249–261 (1995).
[CrossRef]

Lacquet, B. M.

P. L. Swart, P. V. Bulkin, B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997).
[CrossRef]

Lots, A.

H. Hagedorn, A. Lots, P. Pecher, O. Treichel, “Ultra narrow bandpass filters produced by plasma ion assisted deposition,” in Proceedings of Optical Interference Coatings 2001 (Optical Society of America, Washington, D.C., 2001), pp. WA4-1–WA4-3.

Lucovsky, G.

G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films,” Phys. Rev. B 28, 3225–3233 (1983).
[CrossRef]

Ma, E.

L. Domash, E. Ma, N. Nemchuk, A. Payne, “Tunable thin film filters,” in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 522–524, paper ThM3.

Moretti, L.

G. Cocorullo, F. G. Della Corte, L. Moretti, I. Rendina, A. Rubino, “Measurement of the thermo-optic coefficient of a-Si:H at the wavelength of 1500 nm from room temperature to 200 °C,” J. Non-Cryst. Solids 299-302, 310–313 (2002).
[CrossRef]

Muro, K.

Nemchuk, N.

L. Domash, E. Ma, N. Nemchuk, A. Payne, “Tunable thin film filters,” in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 522–524, paper ThM3.

Nonomura, S.

K. Takimoto, A. Fukuta, Y. Yanamoto, N. Yoshida, T. Itoh, S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299-302, 314–317 (2002).
[CrossRef]

O’Brien, N. A.

G. J. Ockenfuss, N. A. O’Brien, “Ultra-low stress coating process: an enabling technology for extreme performance thin film interference filters,” in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. FA8-1–FA8-3.
[CrossRef]

Ockenfuss, G. J.

G. J. Ockenfuss, N. A. O’Brien, “Ultra-low stress coating process: an enabling technology for extreme performance thin film interference filters,” in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. FA8-1–FA8-3.
[CrossRef]

Payne, A.

L. Domash, E. Ma, N. Nemchuk, A. Payne, “Tunable thin film filters,” in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 522–524, paper ThM3.

Pecher, P.

H. Hagedorn, A. Lots, P. Pecher, O. Treichel, “Ultra narrow bandpass filters produced by plasma ion assisted deposition,” in Proceedings of Optical Interference Coatings 2001 (Optical Society of America, Washington, D.C., 2001), pp. WA4-1–WA4-3.

Pelletier, E.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Rendina, I.

G. Cocorullo, F. G. Della Corte, L. Moretti, I. Rendina, A. Rubino, “Measurement of the thermo-optic coefficient of a-Si:H at the wavelength of 1500 nm from room temperature to 200 °C,” J. Non-Cryst. Solids 299-302, 310–313 (2002).
[CrossRef]

Roche, P.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Rubino, A.

G. Cocorullo, F. G. Della Corte, L. Moretti, I. Rendina, A. Rubino, “Measurement of the thermo-optic coefficient of a-Si:H at the wavelength of 1500 nm from room temperature to 200 °C,” J. Non-Cryst. Solids 299-302, 310–313 (2002).
[CrossRef]

Shin, D. W.

Y. J. Kim, D. W. Shin, “Compositional analysis of SiO2 optical film fabricated by flame hydrolysis deposition,” J. Ceram. Process. Res. 3, 186–191 (2002).

Shiraishi, K.

K. Muro, K. Shiraishi, “Poly-Si/SiO2 laminated walk-off polarizer having a beam-splitting angle of more than 20°,” J. Lightwave Technol. 16, 127–133 (1998).
[CrossRef]

H. Yoda, K. Shiraishi, “Optical wavelength filter using hydrogenated silicon oxide for optical communication,” in Proceedings of the 14th Symposium of the Materials Research Society of Japan, T. Tsurumi, K. Oda, S. Ii, eds. (Materials Research Society of Japan, Tokyo, 2002), paper M2-O04-G.

Swart, P. L.

P. L. Swart, P. V. Bulkin, B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997).
[CrossRef]

Takahashi, H.

Takimoto, K.

K. Takimoto, A. Fukuta, Y. Yanamoto, N. Yoshida, T. Itoh, S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299-302, 314–317 (2002).
[CrossRef]

Treichel, O.

H. Hagedorn, A. Lots, P. Pecher, O. Treichel, “Ultra narrow bandpass filters produced by plasma ion assisted deposition,” in Proceedings of Optical Interference Coatings 2001 (Optical Society of America, Washington, D.C., 2001), pp. WA4-1–WA4-3.

Tsai, R-Y.

Tyler, J. E.

G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films,” Phys. Rev. B 28, 3225–3233 (1983).
[CrossRef]

Vechten, D. V.

Wright, A.

G. Jennings, L. Bluck, A. Wright, M. Elia, “The use of infrared spectrophotometry for measuring body water spaces,” Clin. Chem. (N.Y.) 45, 1077–1081 (1999).

Yanamoto, Y.

K. Takimoto, A. Fukuta, Y. Yanamoto, N. Yoshida, T. Itoh, S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299-302, 314–317 (2002).
[CrossRef]

Yang, J.

G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films,” Phys. Rev. B 28, 3225–3233 (1983).
[CrossRef]

Yoda, H.

H. Yoda, K. Shiraishi, “Optical wavelength filter using hydrogenated silicon oxide for optical communication,” in Proceedings of the 14th Symposium of the Materials Research Society of Japan, T. Tsurumi, K. Oda, S. Ii, eds. (Materials Research Society of Japan, Tokyo, 2002), paper M2-O04-G.

Yoshida, N.

K. Takimoto, A. Fukuta, Y. Yanamoto, N. Yoshida, T. Itoh, S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299-302, 314–317 (2002).
[CrossRef]

Appl. Opt.

Clin. Chem. (N.Y.)

G. Jennings, L. Bluck, A. Wright, M. Elia, “The use of infrared spectrophotometry for measuring body water spaces,” Clin. Chem. (N.Y.) 45, 1077–1081 (1999).

J. Ceram. Process. Res.

Y. J. Kim, D. W. Shin, “Compositional analysis of SiO2 optical film fabricated by flame hydrolysis deposition,” J. Ceram. Process. Res. 3, 186–191 (2002).

J. Lightwave Technol.

J. Non-Cryst. Solids

K. Takimoto, A. Fukuta, Y. Yanamoto, N. Yoshida, T. Itoh, S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299-302, 314–317 (2002).
[CrossRef]

G. Cocorullo, F. G. Della Corte, L. Moretti, I. Rendina, A. Rubino, “Measurement of the thermo-optic coefficient of a-Si:H at the wavelength of 1500 nm from room temperature to 200 °C,” J. Non-Cryst. Solids 299-302, 310–313 (2002).
[CrossRef]

L. He, T. Inokuma, Y. Kurata, S. Hasegawa, “Vibrational properties of SiO and SiH in amorphous SiOx:H films (0 x 2.0) prepared by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Solids 185, 249–261 (1995).
[CrossRef]

Opt. Eng.

P. L. Swart, P. V. Bulkin, B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997).
[CrossRef]

Phys. Rev. B

G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films,” Phys. Rev. B 28, 3225–3233 (1983).
[CrossRef]

Thin Solid Films

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Other

L. Domash, E. Ma, N. Nemchuk, A. Payne, “Tunable thin film filters,” in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 522–524, paper ThM3.

H. Hagedorn, A. Lots, P. Pecher, O. Treichel, “Ultra narrow bandpass filters produced by plasma ion assisted deposition,” in Proceedings of Optical Interference Coatings 2001 (Optical Society of America, Washington, D.C., 2001), pp. WA4-1–WA4-3.

G. J. Ockenfuss, N. A. O’Brien, “Ultra-low stress coating process: an enabling technology for extreme performance thin film interference filters,” in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. FA8-1–FA8-3.
[CrossRef]

H. Yoda, K. Shiraishi, “Optical wavelength filter using hydrogenated silicon oxide for optical communication,” in Proceedings of the 14th Symposium of the Materials Research Society of Japan, T. Tsurumi, K. Oda, S. Ii, eds. (Materials Research Society of Japan, Tokyo, 2002), paper M2-O04-G.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

RF magnetron sputtering equipment and optical monitoring system: PDs, photodetectors; PC, personal computer; SMF, single-mode fiber.

Fig. 2
Fig. 2

Refractive index of a-Si:H and its oxide films at λ = 1550 nm as functions of RF power and O2 gas flow ratio O2/(Ar + H2 + O2) at a gas pressure of 1.0 Pa.

Fig. 3
Fig. 3

Refractive index of a-Si:H and its oxide films at λ = 1550 nm as functions of gas pressure and O2 gas flow ratio O2/(Ar + H2 + O2) at a RF power of 300 W.

Fig. 4
Fig. 4

Refractive index and extinction coefficient of a-Si:H and Si:H as functions of wavelength.

Fig. 5
Fig. 5

FTIR spectrum.

Fig. 6
Fig. 6

Cross section of an a-Si:H/SiO2 multilayer obtained by scanning-electron microscopy.

Fig. 7
Fig. 7

Structure of an a-Si:H/SiO2 double-cavity BPF with 27 layers.

Fig. 8
Fig. 8

Experimental and calculated spectra of an a-Si:H/SiO2 BPF with 27 layers upon a silica substrate.

Fig. 9
Fig. 9

Temperature stability of the center wavelength of a-Si:H/SiO2 BPFs upon two substrates with different linear expansion coefficients (α): silica substrate (α = 0.5 × 10-6/°C) and an Ohara WMS-02 substrate (α = 11 × 10-6/°C).

Fig. 10
Fig. 10

Transmission spectra of a one-cavity a-Si:H/SiO2 BPF upon a silica substrate as a function of temperature.

Tables (3)

Tables Icon

Table 1 Deposition Conditions for a-Si:H/SiO2 Alternating Multilayers

Tables Icon

Table 2 Comparison between the Total Number of Layers of an a-Si:H/SiO2 Multilayer and That of a Ta2O5-SiO2Multilayera

Tables Icon

Table 3 Material Parameters of a Multilayer and a Substrate

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

TSCW=λδ+C2β-C1α,
TSCW=λnTdTn0d0-1,
nTN01+δ1+3β+A1+3β+AN01+δ-N0-1N0 A,
dT=d01-B+β.
TSCWλδ+β-N0-1N0 A-Bλδ+C2β-C1α,
C1=2-2N01-2s1-s,C2=C1+1,

Metrics