Abstract

Commercial 1.55-μm extended-cavity semiconductor lasers provide single-mode operation that can be continuously tuned over a range larger than 100 nm without mode hopping. But such performance requires delicate factory adjustment and high mechanical stability of the external cavity. Furthermore, at high emission power the tuning range is limited to small values because of the annoying multimode operations that sometimes occur. We have shown that the alignment constraints can be relaxed by use of an intracavity photorefractive filter. Here we present new results obtained with a crystal with low absorption and high photorefractive gain. We demonstrate that, without inducing excessive additional loss, we can preserve single-mode emission at an output power higher than the maximum power obtained in the absence of a photorefractive crystal over the full tuning range of the laser.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ludeke, E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–500 (1972).
    [CrossRef]
  2. R. Wyatt, W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110–112 (1983).
    [CrossRef]
  3. F. Favre, D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett. 27, 183–184 (1991).
    [CrossRef]
  4. P. Zorabedian, “Axial-mode instability in tunable external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 30, 1542–1552 (1994).
    [CrossRef]
  5. M. de Labachelerie, G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers,” Appl. Opt. 32, 269–274 (1993).
    [CrossRef] [PubMed]
  6. M. de Labachelerie, H. Sasada, G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers: erratum,” Appl. Opt. 33, 3817–3819 (1994).
    [CrossRef] [PubMed]
  7. A. V. Yarovitskiı̌, V. L. Velichanskiı̌, “Limits of continuous frequency tuning of injection lasers with selective external cavities,” Quantum Electron. 25, 765–769 (1995).
    [CrossRef]
  8. A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
    [CrossRef]
  9. A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Relaxation of the alignment tolerances of a 1.55-μm extended-cavity semiconductor laser by use of an intracavity photorefractive filter,” Opt. Lett. 26, 1955–1957 (2001).
    [CrossRef]
  10. A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Stabilization of a 1.55 μm extended-cavity semiconductor laser by intracavity dynamic holography,” Eur. Phys. J. Appl. Phys. 20, 191–196 (2002).
    [CrossRef]
  11. L. Solymar, D. J. Webb, A. Grunnet-Jepsen, “The physics and applications of photorefractive materials,” in Oxford Series in Optical and Imaging Sciences, A. Hasegawa, M. Lapp, B. B. Snavely, H. Stark, A. C. Tam, T. Wilson, eds. (Clarendon, Oxford, 1996), Vol. 11.
  12. J. M. Ramsey, W. B. Whitten, “Controlled scanning of a continuous-wave dye laser with an intracavity photorefractive element,” Opt. Lett. 12, 915–917 (1987).
    [CrossRef] [PubMed]
  13. N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, “Laser mode manipulation by intracavity dynamic holography: application to mode selection,” Appl. Phys. B 69, 155–157 (1999).
    [CrossRef]
  14. S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, T. Salva, “Laser diode made single-mode by a self-adaptive photorefractive filter,” Opt. Commun. 208, 183–189 (2002).
    [CrossRef]
  15. P. Delaye, L. A. de Montmorillon, I. Biaggio, J. C. Launay, G. Roosen, “Wavelength dependent effective trap density in CdTe: evidence of the presence of two photorefractive species,” Opt. Commun. 134, 580–590 (1997).
    [CrossRef]
  16. A. P. Bogatov, P. G. Eliseev, O. G. Okhotnikov, M. P. Rakhval’skiı̌, K. A. Khaı̌retdinov, “Interaction of modes and self-stabilization of single-frequency emission from injection lasers,” Sov. J. Quantum Electron. 13, 1221–1229 (1983).
    [CrossRef]
  17. M. Yamada, “Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers,” J. Appl. Phys. 66, 81–89 (1989).
    [CrossRef]
  18. A. Uskov, J. Mørk, J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
    [CrossRef]

2002 (3)

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Stabilization of a 1.55 μm extended-cavity semiconductor laser by intracavity dynamic holography,” Eur. Phys. J. Appl. Phys. 20, 191–196 (2002).
[CrossRef]

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, T. Salva, “Laser diode made single-mode by a self-adaptive photorefractive filter,” Opt. Commun. 208, 183–189 (2002).
[CrossRef]

2001 (1)

1999 (1)

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, “Laser mode manipulation by intracavity dynamic holography: application to mode selection,” Appl. Phys. B 69, 155–157 (1999).
[CrossRef]

1997 (1)

P. Delaye, L. A. de Montmorillon, I. Biaggio, J. C. Launay, G. Roosen, “Wavelength dependent effective trap density in CdTe: evidence of the presence of two photorefractive species,” Opt. Commun. 134, 580–590 (1997).
[CrossRef]

1995 (1)

A. V. Yarovitskiı̌, V. L. Velichanskiı̌, “Limits of continuous frequency tuning of injection lasers with selective external cavities,” Quantum Electron. 25, 765–769 (1995).
[CrossRef]

1994 (3)

A. Uskov, J. Mørk, J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[CrossRef]

M. de Labachelerie, H. Sasada, G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers: erratum,” Appl. Opt. 33, 3817–3819 (1994).
[CrossRef] [PubMed]

P. Zorabedian, “Axial-mode instability in tunable external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 30, 1542–1552 (1994).
[CrossRef]

1993 (1)

1991 (1)

F. Favre, D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett. 27, 183–184 (1991).
[CrossRef]

1989 (1)

M. Yamada, “Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers,” J. Appl. Phys. 66, 81–89 (1989).
[CrossRef]

1987 (1)

1983 (2)

R. Wyatt, W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110–112 (1983).
[CrossRef]

A. P. Bogatov, P. G. Eliseev, O. G. Okhotnikov, M. P. Rakhval’skiı̌, K. A. Khaı̌retdinov, “Interaction of modes and self-stabilization of single-frequency emission from injection lasers,” Sov. J. Quantum Electron. 13, 1221–1229 (1983).
[CrossRef]

1972 (1)

R. Ludeke, E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–500 (1972).
[CrossRef]

Biaggio, I.

P. Delaye, L. A. de Montmorillon, I. Biaggio, J. C. Launay, G. Roosen, “Wavelength dependent effective trap density in CdTe: evidence of the presence of two photorefractive species,” Opt. Commun. 134, 580–590 (1997).
[CrossRef]

Bogatov, A. P.

A. P. Bogatov, P. G. Eliseev, O. G. Okhotnikov, M. P. Rakhval’skiı̌, K. A. Khaı̌retdinov, “Interaction of modes and self-stabilization of single-frequency emission from injection lasers,” Sov. J. Quantum Electron. 13, 1221–1229 (1983).
[CrossRef]

Brun, A.

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, “Laser mode manipulation by intracavity dynamic holography: application to mode selection,” Appl. Phys. B 69, 155–157 (1999).
[CrossRef]

de Labachelerie, M.

de Montmorillon, L. A.

P. Delaye, L. A. de Montmorillon, I. Biaggio, J. C. Launay, G. Roosen, “Wavelength dependent effective trap density in CdTe: evidence of the presence of two photorefractive species,” Opt. Commun. 134, 580–590 (1997).
[CrossRef]

Delaye, P.

P. Delaye, L. A. de Montmorillon, I. Biaggio, J. C. Launay, G. Roosen, “Wavelength dependent effective trap density in CdTe: evidence of the presence of two photorefractive species,” Opt. Commun. 134, 580–590 (1997).
[CrossRef]

Devlin, W. J.

R. Wyatt, W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110–112 (1983).
[CrossRef]

Dubreuil, N.

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, T. Salva, “Laser diode made single-mode by a self-adaptive photorefractive filter,” Opt. Commun. 208, 183–189 (2002).
[CrossRef]

Eliseev, P. G.

A. P. Bogatov, P. G. Eliseev, O. G. Okhotnikov, M. P. Rakhval’skiı̌, K. A. Khaı̌retdinov, “Interaction of modes and self-stabilization of single-frequency emission from injection lasers,” Sov. J. Quantum Electron. 13, 1221–1229 (1983).
[CrossRef]

Favre, F.

F. Favre, D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett. 27, 183–184 (1991).
[CrossRef]

Georges, P.

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, “Laser mode manipulation by intracavity dynamic holography: application to mode selection,” Appl. Phys. B 69, 155–157 (1999).
[CrossRef]

Godard, A.

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Stabilization of a 1.55 μm extended-cavity semiconductor laser by intracavity dynamic holography,” Eur. Phys. J. Appl. Phys. 20, 191–196 (2002).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Relaxation of the alignment tolerances of a 1.55-μm extended-cavity semiconductor laser by use of an intracavity photorefractive filter,” Opt. Lett. 26, 1955–1957 (2001).
[CrossRef]

Graindorge, P.

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Stabilization of a 1.55 μm extended-cavity semiconductor laser by intracavity dynamic holography,” Eur. Phys. J. Appl. Phys. 20, 191–196 (2002).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Relaxation of the alignment tolerances of a 1.55-μm extended-cavity semiconductor laser by use of an intracavity photorefractive filter,” Opt. Lett. 26, 1955–1957 (2001).
[CrossRef]

Grunnet-Jepsen, A.

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, “The physics and applications of photorefractive materials,” in Oxford Series in Optical and Imaging Sciences, A. Hasegawa, M. Lapp, B. B. Snavely, H. Stark, A. C. Tam, T. Wilson, eds. (Clarendon, Oxford, 1996), Vol. 11.

Harris, E. P.

R. Ludeke, E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–500 (1972).
[CrossRef]

Huot, N.

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, “Laser mode manipulation by intracavity dynamic holography: application to mode selection,” Appl. Phys. B 69, 155–157 (1999).
[CrossRef]

Jonathan, J. M.

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, “Laser mode manipulation by intracavity dynamic holography: application to mode selection,” Appl. Phys. B 69, 155–157 (1999).
[CrossRef]

Khai?retdinov, K. A.

A. P. Bogatov, P. G. Eliseev, O. G. Okhotnikov, M. P. Rakhval’skiı̌, K. A. Khaı̌retdinov, “Interaction of modes and self-stabilization of single-frequency emission from injection lasers,” Sov. J. Quantum Electron. 13, 1221–1229 (1983).
[CrossRef]

Launay, J. C.

P. Delaye, L. A. de Montmorillon, I. Biaggio, J. C. Launay, G. Roosen, “Wavelength dependent effective trap density in CdTe: evidence of the presence of two photorefractive species,” Opt. Commun. 134, 580–590 (1997).
[CrossRef]

Le Guen, D.

F. Favre, D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett. 27, 183–184 (1991).
[CrossRef]

Ludeke, R.

R. Ludeke, E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–500 (1972).
[CrossRef]

Maerten, S.

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, T. Salva, “Laser diode made single-mode by a self-adaptive photorefractive filter,” Opt. Commun. 208, 183–189 (2002).
[CrossRef]

Mark, J.

A. Uskov, J. Mørk, J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[CrossRef]

Martin, P.

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Stabilization of a 1.55 μm extended-cavity semiconductor laser by intracavity dynamic holography,” Eur. Phys. J. Appl. Phys. 20, 191–196 (2002).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Relaxation of the alignment tolerances of a 1.55-μm extended-cavity semiconductor laser by use of an intracavity photorefractive filter,” Opt. Lett. 26, 1955–1957 (2001).
[CrossRef]

Mørk, J.

A. Uskov, J. Mørk, J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[CrossRef]

Okhotnikov, O. G.

A. P. Bogatov, P. G. Eliseev, O. G. Okhotnikov, M. P. Rakhval’skiı̌, K. A. Khaı̌retdinov, “Interaction of modes and self-stabilization of single-frequency emission from injection lasers,” Sov. J. Quantum Electron. 13, 1221–1229 (1983).
[CrossRef]

Passedat, G.

Pauliat, G.

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Stabilization of a 1.55 μm extended-cavity semiconductor laser by intracavity dynamic holography,” Eur. Phys. J. Appl. Phys. 20, 191–196 (2002).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[CrossRef]

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, T. Salva, “Laser diode made single-mode by a self-adaptive photorefractive filter,” Opt. Commun. 208, 183–189 (2002).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Relaxation of the alignment tolerances of a 1.55-μm extended-cavity semiconductor laser by use of an intracavity photorefractive filter,” Opt. Lett. 26, 1955–1957 (2001).
[CrossRef]

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, “Laser mode manipulation by intracavity dynamic holography: application to mode selection,” Appl. Phys. B 69, 155–157 (1999).
[CrossRef]

Rakhval’skii?, M. P.

A. P. Bogatov, P. G. Eliseev, O. G. Okhotnikov, M. P. Rakhval’skiı̌, K. A. Khaı̌retdinov, “Interaction of modes and self-stabilization of single-frequency emission from injection lasers,” Sov. J. Quantum Electron. 13, 1221–1229 (1983).
[CrossRef]

Ramsey, J. M.

Roosen, G.

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, T. Salva, “Laser diode made single-mode by a self-adaptive photorefractive filter,” Opt. Commun. 208, 183–189 (2002).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Stabilization of a 1.55 μm extended-cavity semiconductor laser by intracavity dynamic holography,” Eur. Phys. J. Appl. Phys. 20, 191–196 (2002).
[CrossRef]

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Relaxation of the alignment tolerances of a 1.55-μm extended-cavity semiconductor laser by use of an intracavity photorefractive filter,” Opt. Lett. 26, 1955–1957 (2001).
[CrossRef]

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, “Laser mode manipulation by intracavity dynamic holography: application to mode selection,” Appl. Phys. B 69, 155–157 (1999).
[CrossRef]

P. Delaye, L. A. de Montmorillon, I. Biaggio, J. C. Launay, G. Roosen, “Wavelength dependent effective trap density in CdTe: evidence of the presence of two photorefractive species,” Opt. Commun. 134, 580–590 (1997).
[CrossRef]

Rytz, D.

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, T. Salva, “Laser diode made single-mode by a self-adaptive photorefractive filter,” Opt. Commun. 208, 183–189 (2002).
[CrossRef]

Salva, T.

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, T. Salva, “Laser diode made single-mode by a self-adaptive photorefractive filter,” Opt. Commun. 208, 183–189 (2002).
[CrossRef]

Sasada, H.

Solymar, L.

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, “The physics and applications of photorefractive materials,” in Oxford Series in Optical and Imaging Sciences, A. Hasegawa, M. Lapp, B. B. Snavely, H. Stark, A. C. Tam, T. Wilson, eds. (Clarendon, Oxford, 1996), Vol. 11.

Uskov, A.

A. Uskov, J. Mørk, J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[CrossRef]

Velichanskii?, V. L.

A. V. Yarovitskiı̌, V. L. Velichanskiı̌, “Limits of continuous frequency tuning of injection lasers with selective external cavities,” Quantum Electron. 25, 765–769 (1995).
[CrossRef]

Webb, D. J.

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, “The physics and applications of photorefractive materials,” in Oxford Series in Optical and Imaging Sciences, A. Hasegawa, M. Lapp, B. B. Snavely, H. Stark, A. C. Tam, T. Wilson, eds. (Clarendon, Oxford, 1996), Vol. 11.

Whitten, W. B.

Wyatt, R.

R. Wyatt, W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110–112 (1983).
[CrossRef]

Yamada, M.

M. Yamada, “Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers,” J. Appl. Phys. 66, 81–89 (1989).
[CrossRef]

Yarovitskii?, A. V.

A. V. Yarovitskiı̌, V. L. Velichanskiı̌, “Limits of continuous frequency tuning of injection lasers with selective external cavities,” Quantum Electron. 25, 765–769 (1995).
[CrossRef]

Zorabedian, P.

P. Zorabedian, “Axial-mode instability in tunable external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 30, 1542–1552 (1994).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, “Laser mode manipulation by intracavity dynamic holography: application to mode selection,” Appl. Phys. B 69, 155–157 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

R. Ludeke, E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–500 (1972).
[CrossRef]

Electron. Lett. (2)

R. Wyatt, W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110–112 (1983).
[CrossRef]

F. Favre, D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett. 27, 183–184 (1991).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Stabilization of a 1.55 μm extended-cavity semiconductor laser by intracavity dynamic holography,” Eur. Phys. J. Appl. Phys. 20, 191–196 (2002).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[CrossRef]

A. Uskov, J. Mørk, J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[CrossRef]

P. Zorabedian, “Axial-mode instability in tunable external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 30, 1542–1552 (1994).
[CrossRef]

J. Appl. Phys. (1)

M. Yamada, “Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers,” J. Appl. Phys. 66, 81–89 (1989).
[CrossRef]

Opt. Commun. (2)

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, T. Salva, “Laser diode made single-mode by a self-adaptive photorefractive filter,” Opt. Commun. 208, 183–189 (2002).
[CrossRef]

P. Delaye, L. A. de Montmorillon, I. Biaggio, J. C. Launay, G. Roosen, “Wavelength dependent effective trap density in CdTe: evidence of the presence of two photorefractive species,” Opt. Commun. 134, 580–590 (1997).
[CrossRef]

Opt. Lett. (2)

Quantum Electron. (1)

A. V. Yarovitskiı̌, V. L. Velichanskiı̌, “Limits of continuous frequency tuning of injection lasers with selective external cavities,” Quantum Electron. 25, 765–769 (1995).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. P. Bogatov, P. G. Eliseev, O. G. Okhotnikov, M. P. Rakhval’skiı̌, K. A. Khaı̌retdinov, “Interaction of modes and self-stabilization of single-frequency emission from injection lasers,” Sov. J. Quantum Electron. 13, 1221–1229 (1983).
[CrossRef]

Other (1)

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, “The physics and applications of photorefractive materials,” in Oxford Series in Optical and Imaging Sciences, A. Hasegawa, M. Lapp, B. B. Snavely, H. Stark, A. C. Tam, T. Wilson, eds. (Clarendon, Oxford, 1996), Vol. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Sketch and (b) photograph of the grating-tuned extended-cavity laser, which comprises an antireflection- (AR-) coated laser, a collimating optical system, a photorefractive crystal, and a Littman-mounted grating.

Fig. 2
Fig. 2

Absorption spectrum of the CdTe sample.

Fig. 3
Fig. 3

Counterpropagating two-wave mixing photorefractive gain of the CdTe sample as a function of wavelength. The solid curve is a guide for the eye, not a theoretical fit.

Fig. 4
Fig. 4

Typical characteristics of light versus current at 1.55 μm.

Fig. 5
Fig. 5

Accessible range of δλ under stable single-mode operation as a function of optical power at 1.6 μm with and without a CdTe crystal. The data denoted “single-mode limit” correspond to mode hops toward another single-mode state or to the appearance of multimode operation; the data denoted “multimode limit” correspond to mode hops from a multimode state toward a single-mode state.

Fig. 6
Fig. 6

Width of the stable single-mode range as a function of wavelength at constant output powers of (a) 1 and (b) 5 mW. Filled circles and open circles, measurements with a CdTe crystal inside the cavity and without a crystal, respectively.

Metrics