Abstract

A novel technique for measuring droplet temperatures has been demonstrated. Laser-induced phosphorescence from thermographic phosphors, seeded to distilled water and iso-octane, was used to measure temperatures of single falling droplets. The phosphors were excited by the fourth and third harmonics of a Nd:YAG laser. The subsequent emission was evaluated by spectral and temporal investigations of the thermographic phosphors Mg4FGeO6:Mn and La2O2S:Eu, respectively. The spectral and the temporal methods permitted temperature measurements of free-falling droplets up to 433 K. Results from both methods, which show an estimated accuracy of better than 1%, are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kamimoto, H. Kobayashi, “Combustion processes in diesel engines,” Prog. Energy Combust. Sci. 17, 163–189 (1991).
    [CrossRef]
  2. J. P. A. J. van Beeck, M. L. Riethmuller, “Nonintrusive measurements of temperature and size of single falling raindrops,” Appl. Opt. 34, 1633–1639 (1995).
    [CrossRef] [PubMed]
  3. J. P. A. J. van Beeck, M. L. Riethmuller, “Rainbow interferometry with wire diffraction for simultaneous measurement of droplet temperature, size and velocity,” Part. Part. Syst. Charact. 14, 186–192 (1997).
  4. P. Massoli, F. Beretta, A. D’Alessio, M. Lazzaro, “Temperature and size of single transparent droplets by light scattering in the forward and rainbow regions,” Appl. Opt. 32, 3295–3301 (1993).
    [CrossRef] [PubMed]
  5. Y. Gong, Z. Peng, “LDA analysis of high injection pressure diesel fuel spray and entrainment air flow,” in 1994 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1994), paper 941951.
  6. N. Nakatani, K. Fujiwara, M. Matsumoto, T. Yamada, “Measurement of flow velocity distributions by pulse luminescence method,” J. Phys. E 8, 1042–1046 (1975).
    [CrossRef]
  7. N. Nakatani, M. Matsumoto, Y. Ohmi, T. Yamada, “Turbulence measurement by the pulse luminescence method using a nitrogen pulse laser,” J. Phys. 10, 172–176 (1976).
  8. M. Versluis, G. Juhlin, Ö. Andersson, M. Aldén, “Two-dimensional two-phase water detection using a tunable excimer laser,” Appl. Spectrosc. 52, 343–347 (1998).
    [CrossRef]
  9. L. A. Melton, “Spectrally separated fluorescence emissions for diesel fuel droplets and vapor,” Appl. Opt. 22, 2224–2226 (1983).
    [CrossRef] [PubMed]
  10. A. M. Murray, L. A. Melton, “Fluorescence methods for determination of temperature in fuel sprays,” Appl. Opt. 24, 2783–2787 (1985).
    [CrossRef] [PubMed]
  11. T. Kadota, Y. Taniguchi, K. Miyoshi, M. Tsue, “Exciplex-based fluorescence method for remote probing of fuel droplet temperature,” in 1991 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1991), paper 910729.
  12. T. Kusakabe, M. Tsue, T. Kadota, “Visualisation of diesel spray by laser sheet method,” in 1994 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1994), paper 941920.
  13. J. U. Kim, B. Golding, H. J. Schock, P. Keller, D. G. Nocera, “Exciplex fluorescence visualisation systems for pre-combustion diagnosis of an automotive gasoline engine,” in 1996 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1996), paper 960826.
  14. P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
    [CrossRef]
  15. P. Lavieille, F. Lemoine, G. Lavergne, M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
    [CrossRef]
  16. L. A. Melton, J. F. Verdieck, “Vapor/liquid visualization for fuel sprays,” J. Combust. Sci. Technol. 42, 217–222 (1985).
    [CrossRef]
  17. K. Wickersheim, M. Sun, “Phosphors and fiber optics remove doubt from difficult temperature measurements,” J. Res. Dev. 11, 114–119 (1985).
  18. L. P. Goss, A. A. Smith, M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
    [CrossRef]
  19. S. W. Allison, G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
    [CrossRef]
  20. R. Marino, B. Westring, G. Laufer, R. H. Krauss, R. Whitehurst, “Digital strain and temperature imaging technique,” AIAA J. 37, 1097–1101 (1999).
    [CrossRef]
  21. A. Omrane, F. Ossler, M. Aldén, “Two-dimensional surface temperature of burning materials,” in Proceedings of the Combustion Institute, J. H. Chen, M. D. Colket, eds. (Combustion Institute, Pittsburgh, Pa., 2002), Vol. 29, pp. 2653–2659.
    [CrossRef]
  22. W. H. Fonger, C. W. Struck, “Eu+35D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52, 6364–6372 (1970).
    [CrossRef]
  23. C. W. Struck, W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515–4516 (1971).
    [CrossRef]
  24. D. C. Kincaid, T. S. Longley, “A water droplet evaporation and temperature model,” Trans. ASAE 32, 457–463 (1989).

2001 (1)

P. Lavieille, F. Lemoine, G. Lavergne, M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
[CrossRef]

2000 (1)

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

1999 (1)

R. Marino, B. Westring, G. Laufer, R. H. Krauss, R. Whitehurst, “Digital strain and temperature imaging technique,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

1998 (1)

1997 (2)

J. P. A. J. van Beeck, M. L. Riethmuller, “Rainbow interferometry with wire diffraction for simultaneous measurement of droplet temperature, size and velocity,” Part. Part. Syst. Charact. 14, 186–192 (1997).

S. W. Allison, G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

1995 (1)

1993 (1)

1991 (1)

T. Kamimoto, H. Kobayashi, “Combustion processes in diesel engines,” Prog. Energy Combust. Sci. 17, 163–189 (1991).
[CrossRef]

1989 (2)

L. P. Goss, A. A. Smith, M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

D. C. Kincaid, T. S. Longley, “A water droplet evaporation and temperature model,” Trans. ASAE 32, 457–463 (1989).

1985 (3)

L. A. Melton, J. F. Verdieck, “Vapor/liquid visualization for fuel sprays,” J. Combust. Sci. Technol. 42, 217–222 (1985).
[CrossRef]

K. Wickersheim, M. Sun, “Phosphors and fiber optics remove doubt from difficult temperature measurements,” J. Res. Dev. 11, 114–119 (1985).

A. M. Murray, L. A. Melton, “Fluorescence methods for determination of temperature in fuel sprays,” Appl. Opt. 24, 2783–2787 (1985).
[CrossRef] [PubMed]

1983 (1)

1976 (1)

N. Nakatani, M. Matsumoto, Y. Ohmi, T. Yamada, “Turbulence measurement by the pulse luminescence method using a nitrogen pulse laser,” J. Phys. 10, 172–176 (1976).

1975 (1)

N. Nakatani, K. Fujiwara, M. Matsumoto, T. Yamada, “Measurement of flow velocity distributions by pulse luminescence method,” J. Phys. E 8, 1042–1046 (1975).
[CrossRef]

1971 (1)

C. W. Struck, W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515–4516 (1971).
[CrossRef]

1970 (1)

W. H. Fonger, C. W. Struck, “Eu+35D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52, 6364–6372 (1970).
[CrossRef]

Aldén, M.

M. Versluis, G. Juhlin, Ö. Andersson, M. Aldén, “Two-dimensional two-phase water detection using a tunable excimer laser,” Appl. Spectrosc. 52, 343–347 (1998).
[CrossRef]

A. Omrane, F. Ossler, M. Aldén, “Two-dimensional surface temperature of burning materials,” in Proceedings of the Combustion Institute, J. H. Chen, M. D. Colket, eds. (Combustion Institute, Pittsburgh, Pa., 2002), Vol. 29, pp. 2653–2659.
[CrossRef]

Allison, S. W.

S. W. Allison, G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

Andersson, Ö.

Beretta, F.

D’Alessio, A.

Fonger, W. H.

C. W. Struck, W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515–4516 (1971).
[CrossRef]

W. H. Fonger, C. W. Struck, “Eu+35D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52, 6364–6372 (1970).
[CrossRef]

Fujiwara, K.

N. Nakatani, K. Fujiwara, M. Matsumoto, T. Yamada, “Measurement of flow velocity distributions by pulse luminescence method,” J. Phys. E 8, 1042–1046 (1975).
[CrossRef]

Gillies, G. T.

S. W. Allison, G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

Golding, B.

J. U. Kim, B. Golding, H. J. Schock, P. Keller, D. G. Nocera, “Exciplex fluorescence visualisation systems for pre-combustion diagnosis of an automotive gasoline engine,” in 1996 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1996), paper 960826.

Gong, Y.

Y. Gong, Z. Peng, “LDA analysis of high injection pressure diesel fuel spray and entrainment air flow,” in 1994 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1994), paper 941951.

Goss, L. P.

L. P. Goss, A. A. Smith, M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

Juhlin, G.

Kadota, T.

T. Kadota, Y. Taniguchi, K. Miyoshi, M. Tsue, “Exciplex-based fluorescence method for remote probing of fuel droplet temperature,” in 1991 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1991), paper 910729.

T. Kusakabe, M. Tsue, T. Kadota, “Visualisation of diesel spray by laser sheet method,” in 1994 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1994), paper 941920.

Kamimoto, T.

T. Kamimoto, H. Kobayashi, “Combustion processes in diesel engines,” Prog. Energy Combust. Sci. 17, 163–189 (1991).
[CrossRef]

Keller, P.

J. U. Kim, B. Golding, H. J. Schock, P. Keller, D. G. Nocera, “Exciplex fluorescence visualisation systems for pre-combustion diagnosis of an automotive gasoline engine,” in 1996 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1996), paper 960826.

Kim, J. U.

J. U. Kim, B. Golding, H. J. Schock, P. Keller, D. G. Nocera, “Exciplex fluorescence visualisation systems for pre-combustion diagnosis of an automotive gasoline engine,” in 1996 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1996), paper 960826.

Kincaid, D. C.

D. C. Kincaid, T. S. Longley, “A water droplet evaporation and temperature model,” Trans. ASAE 32, 457–463 (1989).

Kobayashi, H.

T. Kamimoto, H. Kobayashi, “Combustion processes in diesel engines,” Prog. Energy Combust. Sci. 17, 163–189 (1991).
[CrossRef]

Krauss, R. H.

R. Marino, B. Westring, G. Laufer, R. H. Krauss, R. Whitehurst, “Digital strain and temperature imaging technique,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

Kusakabe, T.

T. Kusakabe, M. Tsue, T. Kadota, “Visualisation of diesel spray by laser sheet method,” in 1994 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1994), paper 941920.

Laufer, G.

R. Marino, B. Westring, G. Laufer, R. H. Krauss, R. Whitehurst, “Digital strain and temperature imaging technique,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

Lavergne, G.

P. Lavieille, F. Lemoine, G. Lavergne, M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

Lavieille, P.

P. Lavieille, F. Lemoine, G. Lavergne, M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

Lazzaro, M.

Lebouché, M.

P. Lavieille, F. Lemoine, G. Lavergne, M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

Lemoine, F.

P. Lavieille, F. Lemoine, G. Lavergne, M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

Longley, T. S.

D. C. Kincaid, T. S. Longley, “A water droplet evaporation and temperature model,” Trans. ASAE 32, 457–463 (1989).

Marino, R.

R. Marino, B. Westring, G. Laufer, R. H. Krauss, R. Whitehurst, “Digital strain and temperature imaging technique,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

Massoli, P.

Matsumoto, M.

N. Nakatani, M. Matsumoto, Y. Ohmi, T. Yamada, “Turbulence measurement by the pulse luminescence method using a nitrogen pulse laser,” J. Phys. 10, 172–176 (1976).

N. Nakatani, K. Fujiwara, M. Matsumoto, T. Yamada, “Measurement of flow velocity distributions by pulse luminescence method,” J. Phys. E 8, 1042–1046 (1975).
[CrossRef]

Melton, L. A.

Miyoshi, K.

T. Kadota, Y. Taniguchi, K. Miyoshi, M. Tsue, “Exciplex-based fluorescence method for remote probing of fuel droplet temperature,” in 1991 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1991), paper 910729.

Murray, A. M.

Nakatani, N.

N. Nakatani, M. Matsumoto, Y. Ohmi, T. Yamada, “Turbulence measurement by the pulse luminescence method using a nitrogen pulse laser,” J. Phys. 10, 172–176 (1976).

N. Nakatani, K. Fujiwara, M. Matsumoto, T. Yamada, “Measurement of flow velocity distributions by pulse luminescence method,” J. Phys. E 8, 1042–1046 (1975).
[CrossRef]

Nocera, D. G.

J. U. Kim, B. Golding, H. J. Schock, P. Keller, D. G. Nocera, “Exciplex fluorescence visualisation systems for pre-combustion diagnosis of an automotive gasoline engine,” in 1996 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1996), paper 960826.

Ohmi, Y.

N. Nakatani, M. Matsumoto, Y. Ohmi, T. Yamada, “Turbulence measurement by the pulse luminescence method using a nitrogen pulse laser,” J. Phys. 10, 172–176 (1976).

Omrane, A.

A. Omrane, F. Ossler, M. Aldén, “Two-dimensional surface temperature of burning materials,” in Proceedings of the Combustion Institute, J. H. Chen, M. D. Colket, eds. (Combustion Institute, Pittsburgh, Pa., 2002), Vol. 29, pp. 2653–2659.
[CrossRef]

Ossler, F.

A. Omrane, F. Ossler, M. Aldén, “Two-dimensional surface temperature of burning materials,” in Proceedings of the Combustion Institute, J. H. Chen, M. D. Colket, eds. (Combustion Institute, Pittsburgh, Pa., 2002), Vol. 29, pp. 2653–2659.
[CrossRef]

Peng, Z.

Y. Gong, Z. Peng, “LDA analysis of high injection pressure diesel fuel spray and entrainment air flow,” in 1994 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1994), paper 941951.

Post, M. E.

L. P. Goss, A. A. Smith, M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

Riethmuller, M. L.

J. P. A. J. van Beeck, M. L. Riethmuller, “Rainbow interferometry with wire diffraction for simultaneous measurement of droplet temperature, size and velocity,” Part. Part. Syst. Charact. 14, 186–192 (1997).

J. P. A. J. van Beeck, M. L. Riethmuller, “Nonintrusive measurements of temperature and size of single falling raindrops,” Appl. Opt. 34, 1633–1639 (1995).
[CrossRef] [PubMed]

Schock, H. J.

J. U. Kim, B. Golding, H. J. Schock, P. Keller, D. G. Nocera, “Exciplex fluorescence visualisation systems for pre-combustion diagnosis of an automotive gasoline engine,” in 1996 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1996), paper 960826.

Smith, A. A.

L. P. Goss, A. A. Smith, M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

Struck, C. W.

C. W. Struck, W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515–4516 (1971).
[CrossRef]

W. H. Fonger, C. W. Struck, “Eu+35D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52, 6364–6372 (1970).
[CrossRef]

Sun, M.

K. Wickersheim, M. Sun, “Phosphors and fiber optics remove doubt from difficult temperature measurements,” J. Res. Dev. 11, 114–119 (1985).

Taniguchi, Y.

T. Kadota, Y. Taniguchi, K. Miyoshi, M. Tsue, “Exciplex-based fluorescence method for remote probing of fuel droplet temperature,” in 1991 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1991), paper 910729.

Tsue, M.

T. Kadota, Y. Taniguchi, K. Miyoshi, M. Tsue, “Exciplex-based fluorescence method for remote probing of fuel droplet temperature,” in 1991 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1991), paper 910729.

T. Kusakabe, M. Tsue, T. Kadota, “Visualisation of diesel spray by laser sheet method,” in 1994 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1994), paper 941920.

van Beeck, J. P. A. J.

J. P. A. J. van Beeck, M. L. Riethmuller, “Rainbow interferometry with wire diffraction for simultaneous measurement of droplet temperature, size and velocity,” Part. Part. Syst. Charact. 14, 186–192 (1997).

J. P. A. J. van Beeck, M. L. Riethmuller, “Nonintrusive measurements of temperature and size of single falling raindrops,” Appl. Opt. 34, 1633–1639 (1995).
[CrossRef] [PubMed]

Verdieck, J. F.

L. A. Melton, J. F. Verdieck, “Vapor/liquid visualization for fuel sprays,” J. Combust. Sci. Technol. 42, 217–222 (1985).
[CrossRef]

Versluis, M.

Virepinte, J. F.

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

Westring, B.

R. Marino, B. Westring, G. Laufer, R. H. Krauss, R. Whitehurst, “Digital strain and temperature imaging technique,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

Whitehurst, R.

R. Marino, B. Westring, G. Laufer, R. H. Krauss, R. Whitehurst, “Digital strain and temperature imaging technique,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

Wickersheim, K.

K. Wickersheim, M. Sun, “Phosphors and fiber optics remove doubt from difficult temperature measurements,” J. Res. Dev. 11, 114–119 (1985).

Yamada, T.

N. Nakatani, M. Matsumoto, Y. Ohmi, T. Yamada, “Turbulence measurement by the pulse luminescence method using a nitrogen pulse laser,” J. Phys. 10, 172–176 (1976).

N. Nakatani, K. Fujiwara, M. Matsumoto, T. Yamada, “Measurement of flow velocity distributions by pulse luminescence method,” J. Phys. E 8, 1042–1046 (1975).
[CrossRef]

AIAA J. (1)

R. Marino, B. Westring, G. Laufer, R. H. Krauss, R. Whitehurst, “Digital strain and temperature imaging technique,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (1)

Exp. Fluids (2)

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
[CrossRef]

J. Appl. Phys. (1)

C. W. Struck, W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515–4516 (1971).
[CrossRef]

J. Chem. Phys. (1)

W. H. Fonger, C. W. Struck, “Eu+35D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52, 6364–6372 (1970).
[CrossRef]

J. Combust. Sci. Technol. (1)

L. A. Melton, J. F. Verdieck, “Vapor/liquid visualization for fuel sprays,” J. Combust. Sci. Technol. 42, 217–222 (1985).
[CrossRef]

J. Phys. (1)

N. Nakatani, M. Matsumoto, Y. Ohmi, T. Yamada, “Turbulence measurement by the pulse luminescence method using a nitrogen pulse laser,” J. Phys. 10, 172–176 (1976).

J. Phys. E (1)

N. Nakatani, K. Fujiwara, M. Matsumoto, T. Yamada, “Measurement of flow velocity distributions by pulse luminescence method,” J. Phys. E 8, 1042–1046 (1975).
[CrossRef]

J. Res. Dev. (1)

K. Wickersheim, M. Sun, “Phosphors and fiber optics remove doubt from difficult temperature measurements,” J. Res. Dev. 11, 114–119 (1985).

Part. Part. Syst. Charact. (1)

J. P. A. J. van Beeck, M. L. Riethmuller, “Rainbow interferometry with wire diffraction for simultaneous measurement of droplet temperature, size and velocity,” Part. Part. Syst. Charact. 14, 186–192 (1997).

Prog. Energy Combust. Sci. (1)

T. Kamimoto, H. Kobayashi, “Combustion processes in diesel engines,” Prog. Energy Combust. Sci. 17, 163–189 (1991).
[CrossRef]

Rev. Sci. Instrum. (2)

L. P. Goss, A. A. Smith, M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

S. W. Allison, G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

Trans. ASAE (1)

D. C. Kincaid, T. S. Longley, “A water droplet evaporation and temperature model,” Trans. ASAE 32, 457–463 (1989).

Other (5)

A. Omrane, F. Ossler, M. Aldén, “Two-dimensional surface temperature of burning materials,” in Proceedings of the Combustion Institute, J. H. Chen, M. D. Colket, eds. (Combustion Institute, Pittsburgh, Pa., 2002), Vol. 29, pp. 2653–2659.
[CrossRef]

T. Kadota, Y. Taniguchi, K. Miyoshi, M. Tsue, “Exciplex-based fluorescence method for remote probing of fuel droplet temperature,” in 1991 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1991), paper 910729.

T. Kusakabe, M. Tsue, T. Kadota, “Visualisation of diesel spray by laser sheet method,” in 1994 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1994), paper 941920.

J. U. Kim, B. Golding, H. J. Schock, P. Keller, D. G. Nocera, “Exciplex fluorescence visualisation systems for pre-combustion diagnosis of an automotive gasoline engine,” in 1996 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1996), paper 960826.

Y. Gong, Z. Peng, “LDA analysis of high injection pressure diesel fuel spray and entrainment air flow,” in 1994 SAE International Conference and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1994), paper 941951.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spectra of Mg4FGeO6:Mn in distilled water at three temperatures. The 631-nm line was seen to increase with temperature relative to the 657-nm line.

Fig. 2
Fig. 2

Results from calibration measurements made in a liquid tank. The ratio between the 631-nm and the 657-nm lines is plotted against cell temperatures.

Fig. 3
Fig. 3

La2O2S:Eu lifetime measured at several temperatures. The lifetime decreases exponentially as the temperature increases. The lifetime is plotted on a logarithmic scale to illustrate the sensitivity of the technique up to 433 K. The sensitivity is directly related to the slope of the logarithm of the lifetime versus temperature.

Fig. 4
Fig. 4

Experimental setup: A He-Ne laser was used to trigger the acquisition of the phosphorescence light that was due to the interaction of the UV laser light with the droplet. The phosphorescence signal was stored in a detector for subsequent processing.

Fig. 5
Fig. 5

Mg4FGeO6:Mn phosphorescence from a falling droplet. The image was detected by an intensified CCD camera.

Fig. 6
Fig. 6

Temperatures of droplets measured by LIP as a function of time from the start of the heating process compared with results from the thermocouple (TC) and the model. (A) Results from the spectral method, (B) results from the temporal method. Both methods demonstrate the ability of the technique to measure droplet temperatures.

Fig. 7
Fig. 7

Modeled droplet temperature from room temperature to 373 K. The droplets travel a distance of 100 mm from the nozzle. The smaller the droplet, the more heat it will lose, especially by evaporation to the surrounding air. The 10-mm droplet was seen to be the closest to the reference thermocouple temperature.

Fig. 8
Fig. 8

Good agreement between the thermocouple temperature and the mean temperature of 50 droplets can be seen. The error bars show twice the resultant standard deviation. From these replicas a precision and an accuracy of better than 99% are estimated.

Fig. 9
Fig. 9

Results of measurement of iso-octane droplets temperatures of 50 individual droplets. The mean measured temperature was close to the temperature shown by the thermocouple, with a standard deviation of 0.34 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Hs=Δtk/DTwater-TairπD2 Nu,
ΔT=λΔM-HsMCpl,

Metrics