Abstract

The polarization control method offers a flexible, robust, and low-cost route for the parallel fabrication of gratings with complex apodization profiles including several discrete phase shifts and chirp. The performance of several test gratings is evaluated in terms of their spectral response and compared with theoretical predictions. Short gratings with sidelobe-suppression levels in excess of 32 dB and transmission dips lower than 80 dB have been realized. Finally, most of the devices fabricated by the polarization control method show comparable quality to gratings manufactured by far more complex methods.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  2. I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
    [CrossRef]
  3. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
    [CrossRef]
  4. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  5. B. Malo, S. Thériault, D. C. Johnson, F. Bilodeau, J. Albert, K. O. Hill, “Apodized in-fiber Bragg grating reflectors photoimprinted using a phasemask,” Electron. Lett. 31, 223–225 (1995).
    [CrossRef]
  6. I. Riant, “Fiber Bragg gratings for optical telecommunications,” C. R. Phys. 4, 41–49 (2003).
    [CrossRef]
  7. G. Nykolak, B. J. Eggleton, G. Lenz, T. A. Strasser, “Dispersion penalty measurements of narrow fiber Bragg gratings at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1319–1321 (1998).
    [CrossRef]
  8. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  9. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  10. J. Martin, F. Oulette, “Novel writing technique of long and highly reflective in-fiber gratings,” Electron. Lett. 30, 811–812 (1994).
    [CrossRef]
  11. R. Kashyap, A. Swanton, D. J. Armes, “Simple technique for apodizing chirped and unchirped fiber Bragg gratings,” Electron. Lett. 32, 1226–1228 (1996).
    [CrossRef]
  12. S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, A. S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670–3677 (2000).
    [CrossRef]
  13. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), Postdeadline paper 77.
  14. R. Stubbe, B. Sahlgren, S. Sandgren, A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), Postdeadline paper 1.
  15. M. J. Cole, W. H. Loh, M. N. Zervas, S. Barcelos, “Moving fiber/phasemask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phasemask,” Electron. Lett. 31, 1488–1490 (1995).
    [CrossRef]
  16. J. B. Jensen, N. Plougmann, H. J. Deyerl, P. Varming, J. Hübner, M. Kristensen, “Polarization control method for ultraviolet writing of advanced Bragg gratings,” Opt. Lett. 27, 1004–1006 (2002).
    [CrossRef]
  17. M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
    [CrossRef]
  18. M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Optimised square passband fiber Bragg grating filter with in-band flat group delay response,” Electron. Lett. 34, 800–801 (1998).
    [CrossRef]
  19. H. R. Sørensen, H. J. Deyerl conducted research on the polarization dependence of the photosensitivity in deuterium-loaded fibers.
  20. M. Parent, J. Bures, S. Lacroix, J. Lapierre, “Propriétés de polarisation des réflecteurs de Bragg induits par photosensibilité dans les fibres optiques monomodes,” Appl. Opt. 24, 354–357 (1985).
    [CrossRef]
  21. P. Niay, P. Bernage, T. Taunay, M. Douay, E. Delevanque, S. Boj, B. Poumellec, “Polarization selectivity of gratings written in Hi-Bi fibers by the external method,” IEEE Photon. Technol. Lett. 7, 391–393 (1995).
    [CrossRef]
  22. J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen, B. Pálsdóttir, “Polarisation control of DFB fiber laser using UV-induced birefringent phase shift,” Electron. Lett. 34, 678–679 (1998).
    [CrossRef]
  23. T. Erdogan, V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994).
    [CrossRef]
  24. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19, 1260–1262 (1994).
    [CrossRef] [PubMed]
  25. M. Janos, J. Canning, M. G. Sceats, “Incoherent scattering losses in optical fiber Bragg gratings,” Opt. Lett. 21, 1827–1829 (1996).
    [CrossRef] [PubMed]
  26. P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
    [CrossRef]
  27. T. Meyer, P. A. Nicati, P. A. Robert, D. Varelas, H. G. Limberger, R. P. Salathé, “Reversibility of photoinduced birefringence in ultralow-birefringence fibers,” Opt. Lett. 21, 1661–1663 (1996).
    [CrossRef] [PubMed]
  28. Integrated and Fiber Optical Gratings Design Software, Version 4.0 for Windows (IFO Gratings v. 4.0), Optiwave Corporation Ottawa, Ontario, Canada (2001), http://www.optiwave.com .
  29. P. S. Cross, H. Kogelnik, “Sidelobe suppression in corrugated-waveguide filters,” Opt. Lett. 1, 43–45 (1977).
    [CrossRef] [PubMed]
  30. M. Ibsen, P. Petropoulos, M. N. Zervas, R. Feced, “Dispersion-free fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 54 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper MC1.
  31. J. Skaar, “Synthesis and characterization of fiber Bragg gratings,” Ph.D. thesis (The Norwegian University of Science and Technology, Trondheim, Norway, 2000).
  32. R. Feced, M. N. Zervas, M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
    [CrossRef]
  33. L. Poladian, “Simple grating synthesis algorithm,” Opt. Lett. 25, 787–789 (2000).
    [CrossRef]
  34. N. Plougmann, M. Kristensen, “Efficient iterative technique for designing Bragg gratings,” Opt. Lett. 29, 23–25 (2004).
    [CrossRef] [PubMed]
  35. D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
    [CrossRef]
  36. K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
    [CrossRef]
  37. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
    [CrossRef] [PubMed]
  38. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1432 (2000).
    [CrossRef]
  39. F. Floreani, L. Zhang, H. J. Deyerl, N. Plougmann, H. Ou, J. B. Jensen, M. Kristensen, “A flexible approach for the apodisation of planar waveguide Bragg gratings,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, Vol. 62 of 2003 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), paper MD15.

2004 (1)

2003 (1)

I. Riant, “Fiber Bragg gratings for optical telecommunications,” C. R. Phys. 4, 41–49 (2003).
[CrossRef]

2002 (1)

2001 (1)

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[CrossRef]

2000 (3)

1999 (2)

R. Feced, M. N. Zervas, M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
[CrossRef]

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
[CrossRef]

1998 (4)

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen, B. Pálsdóttir, “Polarisation control of DFB fiber laser using UV-induced birefringent phase shift,” Electron. Lett. 34, 678–679 (1998).
[CrossRef]

K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Optimised square passband fiber Bragg grating filter with in-band flat group delay response,” Electron. Lett. 34, 800–801 (1998).
[CrossRef]

G. Nykolak, B. J. Eggleton, G. Lenz, T. A. Strasser, “Dispersion penalty measurements of narrow fiber Bragg gratings at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1319–1321 (1998).
[CrossRef]

1997 (2)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

1996 (5)

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[CrossRef]

R. Kashyap, A. Swanton, D. J. Armes, “Simple technique for apodizing chirped and unchirped fiber Bragg gratings,” Electron. Lett. 32, 1226–1228 (1996).
[CrossRef]

D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[CrossRef]

M. Janos, J. Canning, M. G. Sceats, “Incoherent scattering losses in optical fiber Bragg gratings,” Opt. Lett. 21, 1827–1829 (1996).
[CrossRef] [PubMed]

T. Meyer, P. A. Nicati, P. A. Robert, D. Varelas, H. G. Limberger, R. P. Salathé, “Reversibility of photoinduced birefringence in ultralow-birefringence fibers,” Opt. Lett. 21, 1661–1663 (1996).
[CrossRef] [PubMed]

1995 (3)

P. Niay, P. Bernage, T. Taunay, M. Douay, E. Delevanque, S. Boj, B. Poumellec, “Polarization selectivity of gratings written in Hi-Bi fibers by the external method,” IEEE Photon. Technol. Lett. 7, 391–393 (1995).
[CrossRef]

M. J. Cole, W. H. Loh, M. N. Zervas, S. Barcelos, “Moving fiber/phasemask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phasemask,” Electron. Lett. 31, 1488–1490 (1995).
[CrossRef]

B. Malo, S. Thériault, D. C. Johnson, F. Bilodeau, J. Albert, K. O. Hill, “Apodized in-fiber Bragg grating reflectors photoimprinted using a phasemask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

1994 (3)

1989 (1)

1987 (1)

1985 (1)

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

1977 (1)

Ahuja, A.

Albert, J.

S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, A. S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670–3677 (2000).
[CrossRef]

B. Malo, S. Thériault, D. C. Johnson, F. Bilodeau, J. Albert, K. O. Hill, “Apodized in-fiber Bragg grating reflectors photoimprinted using a phasemask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), Postdeadline paper 77.

Armes, D. J.

R. Kashyap, A. Swanton, D. J. Armes, “Simple technique for apodizing chirped and unchirped fiber Bragg gratings,” Electron. Lett. 32, 1226–1228 (1996).
[CrossRef]

Asseh, A.

R. Stubbe, B. Sahlgren, S. Sandgren, A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), Postdeadline paper 1.

Barcelos, S.

M. J. Cole, W. H. Loh, M. N. Zervas, S. Barcelos, “Moving fiber/phasemask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phasemask,” Electron. Lett. 31, 1488–1490 (1995).
[CrossRef]

Bayon, J. F.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
[CrossRef]

Bennion, I.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[CrossRef]

Berendt, M. O.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen, B. Pálsdóttir, “Polarisation control of DFB fiber laser using UV-induced birefringent phase shift,” Electron. Lett. 34, 678–679 (1998).
[CrossRef]

Bernage, P.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
[CrossRef]

P. Niay, P. Bernage, T. Taunay, M. Douay, E. Delevanque, S. Boj, B. Poumellec, “Polarization selectivity of gratings written in Hi-Bi fibers by the external method,” IEEE Photon. Technol. Lett. 7, 391–393 (1995).
[CrossRef]

Bilodeau, F.

S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, A. S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670–3677 (2000).
[CrossRef]

B. Malo, S. Thériault, D. C. Johnson, F. Bilodeau, J. Albert, K. O. Hill, “Apodized in-fiber Bragg grating reflectors photoimprinted using a phasemask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), Postdeadline paper 77.

Boj, S.

P. Niay, P. Bernage, T. Taunay, M. Douay, E. Delevanque, S. Boj, B. Poumellec, “Polarization selectivity of gratings written in Hi-Bi fibers by the external method,” IEEE Photon. Technol. Lett. 7, 391–393 (1995).
[CrossRef]

Bures, J.

Canning, J.

Capmany, J.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[CrossRef]

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Optimised square passband fiber Bragg grating filter with in-band flat group delay response,” Electron. Lett. 34, 800–801 (1998).
[CrossRef]

M. J. Cole, W. H. Loh, M. N. Zervas, S. Barcelos, “Moving fiber/phasemask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phasemask,” Electron. Lett. 31, 1488–1490 (1995).
[CrossRef]

Cross, P. S.

Delevanque, E.

P. Niay, P. Bernage, T. Taunay, M. Douay, E. Delevanque, S. Boj, B. Poumellec, “Polarization selectivity of gratings written in Hi-Bi fibers by the external method,” IEEE Photon. Technol. Lett. 7, 391–393 (1995).
[CrossRef]

Delevaque, E.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
[CrossRef]

Deyerl, H. J.

J. B. Jensen, N. Plougmann, H. J. Deyerl, P. Varming, J. Hübner, M. Kristensen, “Polarization control method for ultraviolet writing of advanced Bragg gratings,” Opt. Lett. 27, 1004–1006 (2002).
[CrossRef]

F. Floreani, L. Zhang, H. J. Deyerl, N. Plougmann, H. Ou, J. B. Jensen, M. Kristensen, “A flexible approach for the apodisation of planar waveguide Bragg gratings,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, Vol. 62 of 2003 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), paper MD15.

Doran, N. J.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[CrossRef]

Douay, M.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
[CrossRef]

P. Niay, P. Bernage, T. Taunay, M. Douay, E. Delevanque, S. Boj, B. Poumellec, “Polarization selectivity of gratings written in Hi-Bi fibers by the external method,” IEEE Photon. Technol. Lett. 7, 391–393 (1995).
[CrossRef]

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Optimised square passband fiber Bragg grating filter with in-band flat group delay response,” Electron. Lett. 34, 800–801 (1998).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1432 (2000).
[CrossRef]

G. Nykolak, B. J. Eggleton, G. Lenz, T. A. Strasser, “Dispersion penalty measurements of narrow fiber Bragg gratings at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1319–1321 (1998).
[CrossRef]

Ennser, K.

K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[CrossRef]

Erdogan, T.

Feced, R.

R. Feced, M. N. Zervas, M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
[CrossRef]

M. Ibsen, P. Petropoulos, M. N. Zervas, R. Feced, “Dispersion-free fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 54 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper MC1.

Floreani, F.

F. Floreani, L. Zhang, H. J. Deyerl, N. Plougmann, H. Ou, J. B. Jensen, M. Kristensen, “A flexible approach for the apodisation of planar waveguide Bragg gratings,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, Vol. 62 of 2003 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), paper MD15.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Glenn, W. H.

Hill, K. O.

S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, A. S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670–3677 (2000).
[CrossRef]

B. Malo, S. Thériault, D. C. Johnson, F. Bilodeau, J. Albert, K. O. Hill, “Apodized in-fiber Bragg grating reflectors photoimprinted using a phasemask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), Postdeadline paper 77.

Holmes, A. S.

Hübner, J.

J. B. Jensen, N. Plougmann, H. J. Deyerl, P. Varming, J. Hübner, M. Kristensen, “Polarization control method for ultraviolet writing of advanced Bragg gratings,” Opt. Lett. 27, 1004–1006 (2002).
[CrossRef]

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen, B. Pálsdóttir, “Polarisation control of DFB fiber laser using UV-induced birefringent phase shift,” Electron. Lett. 34, 678–679 (1998).
[CrossRef]

Ibsen, M.

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Optimised square passband fiber Bragg grating filter with in-band flat group delay response,” Electron. Lett. 34, 800–801 (1998).
[CrossRef]

M. Ibsen, P. Petropoulos, M. N. Zervas, R. Feced, “Dispersion-free fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 54 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper MC1.

Inniss, D.

Janos, M.

Jensen, J. B.

J. B. Jensen, N. Plougmann, H. J. Deyerl, P. Varming, J. Hübner, M. Kristensen, “Polarization control method for ultraviolet writing of advanced Bragg gratings,” Opt. Lett. 27, 1004–1006 (2002).
[CrossRef]

F. Floreani, L. Zhang, H. J. Deyerl, N. Plougmann, H. Ou, J. B. Jensen, M. Kristensen, “A flexible approach for the apodisation of planar waveguide Bragg gratings,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, Vol. 62 of 2003 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), paper MD15.

Johnson, D. C.

S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, A. S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670–3677 (2000).
[CrossRef]

B. Malo, S. Thériault, D. C. Johnson, F. Bilodeau, J. Albert, K. O. Hill, “Apodized in-fiber Bragg grating reflectors photoimprinted using a phasemask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), Postdeadline paper 77.

Kashyap, R.

R. Kashyap, A. Swanton, D. J. Armes, “Simple technique for apodizing chirped and unchirped fiber Bragg gratings,” Electron. Lett. 32, 1226–1228 (1996).
[CrossRef]

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kitagawa, T.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), Postdeadline paper 77.

Kogelnik, H.

Kosinski, S. G.

Kristensen, M.

N. Plougmann, M. Kristensen, “Efficient iterative technique for designing Bragg gratings,” Opt. Lett. 29, 23–25 (2004).
[CrossRef] [PubMed]

J. B. Jensen, N. Plougmann, H. J. Deyerl, P. Varming, J. Hübner, M. Kristensen, “Polarization control method for ultraviolet writing of advanced Bragg gratings,” Opt. Lett. 27, 1004–1006 (2002).
[CrossRef]

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[CrossRef]

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen, B. Pálsdóttir, “Polarisation control of DFB fiber laser using UV-induced birefringent phase shift,” Electron. Lett. 34, 678–679 (1998).
[CrossRef]

F. Floreani, L. Zhang, H. J. Deyerl, N. Plougmann, H. Ou, J. B. Jensen, M. Kristensen, “A flexible approach for the apodisation of planar waveguide Bragg gratings,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, Vol. 62 of 2003 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), paper MD15.

Kuo, P.

Lacroix, S.

Laming, R. I.

K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Optimised square passband fiber Bragg grating filter with in-band flat group delay response,” Electron. Lett. 34, 800–801 (1998).
[CrossRef]

Lapierre, J.

Lauridsen, V. C.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen, B. Pálsdóttir, “Polarisation control of DFB fiber laser using UV-induced birefringent phase shift,” Electron. Lett. 34, 678–679 (1998).
[CrossRef]

Leconte, B.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
[CrossRef]

Lemaire, P. J.

Lenz, G.

G. Nykolak, B. J. Eggleton, G. Lenz, T. A. Strasser, “Dispersion penalty measurements of narrow fiber Bragg gratings at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1319–1321 (1998).
[CrossRef]

Limberger, H. G.

Loh, W. H.

M. J. Cole, W. H. Loh, M. N. Zervas, S. Barcelos, “Moving fiber/phasemask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phasemask,” Electron. Lett. 31, 1488–1490 (1995).
[CrossRef]

Malo, B.

B. Malo, S. Thériault, D. C. Johnson, F. Bilodeau, J. Albert, K. O. Hill, “Apodized in-fiber Bragg grating reflectors photoimprinted using a phasemask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), Postdeadline paper 77.

Marti, J.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[CrossRef]

Martin, J.

J. Martin, F. Oulette, “Novel writing technique of long and highly reflective in-fiber gratings,” Electron. Lett. 30, 811–812 (1994).
[CrossRef]

Meltz, G.

Meyer, T.

Mihailov, S. J.

Mikkelsen, B.

Mizrahi, V.

Morey, W. W.

Muriel, M. A.

R. Feced, M. N. Zervas, M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
[CrossRef]

Niay, P.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
[CrossRef]

P. Niay, P. Bernage, T. Taunay, M. Douay, E. Delevanque, S. Boj, B. Poumellec, “Polarization selectivity of gratings written in Hi-Bi fibers by the external method,” IEEE Photon. Technol. Lett. 7, 391–393 (1995).
[CrossRef]

Nicati, P. A.

Nielsen, T. N.

Nykolak, G.

G. Nykolak, B. J. Eggleton, G. Lenz, T. A. Strasser, “Dispersion penalty measurements of narrow fiber Bragg gratings at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1319–1321 (1998).
[CrossRef]

Ortega, D.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[CrossRef]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

Ou, H.

F. Floreani, L. Zhang, H. J. Deyerl, N. Plougmann, H. Ou, J. B. Jensen, M. Kristensen, “A flexible approach for the apodisation of planar waveguide Bragg gratings,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, Vol. 62 of 2003 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), paper MD15.

Ouellette, F.

Oulette, F.

J. Martin, F. Oulette, “Novel writing technique of long and highly reflective in-fiber gratings,” Electron. Lett. 30, 811–812 (1994).
[CrossRef]

Pálsdóttir, B.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen, B. Pálsdóttir, “Polarisation control of DFB fiber laser using UV-induced birefringent phase shift,” Electron. Lett. 34, 678–679 (1998).
[CrossRef]

Parent, M.

Pastor, D.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[CrossRef]

Petropoulos, P.

M. Ibsen, P. Petropoulos, M. N. Zervas, R. Feced, “Dispersion-free fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 54 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper MC1.

Philipsen, J. L.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen, B. Pálsdóttir, “Polarisation control of DFB fiber laser using UV-induced birefringent phase shift,” Electron. Lett. 34, 678–679 (1998).
[CrossRef]

Plougmann, N.

N. Plougmann, M. Kristensen, “Efficient iterative technique for designing Bragg gratings,” Opt. Lett. 29, 23–25 (2004).
[CrossRef] [PubMed]

J. B. Jensen, N. Plougmann, H. J. Deyerl, P. Varming, J. Hübner, M. Kristensen, “Polarization control method for ultraviolet writing of advanced Bragg gratings,” Opt. Lett. 27, 1004–1006 (2002).
[CrossRef]

F. Floreani, L. Zhang, H. J. Deyerl, N. Plougmann, H. Ou, J. B. Jensen, M. Kristensen, “A flexible approach for the apodisation of planar waveguide Bragg gratings,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, Vol. 62 of 2003 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), paper MD15.

Poignant, H.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
[CrossRef]

Poladian, L.

Poumellec, B.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
[CrossRef]

P. Niay, P. Bernage, T. Taunay, M. Douay, E. Delevanque, S. Boj, B. Poumellec, “Polarization selectivity of gratings written in Hi-Bi fibers by the external method,” IEEE Photon. Technol. Lett. 7, 391–393 (1995).
[CrossRef]

Povlsen, J. H.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen, B. Pálsdóttir, “Polarisation control of DFB fiber laser using UV-induced birefringent phase shift,” Electron. Lett. 34, 678–679 (1998).
[CrossRef]

Ramecourt, D.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
[CrossRef]

Reed, W. A.

Riant, I.

I. Riant, “Fiber Bragg gratings for optical telecommunications,” C. R. Phys. 4, 41–49 (2003).
[CrossRef]

Robert, P. A.

Rogers, J. A.

Sahlgren, B.

R. Stubbe, B. Sahlgren, S. Sandgren, A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), Postdeadline paper 1.

Salathé, R. P.

Sandgren, S.

R. Stubbe, B. Sahlgren, S. Sandgren, A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), Postdeadline paper 1.

Sceats, M. G.

Skaar, J.

J. Skaar, “Synthesis and characterization of fiber Bragg gratings,” Ph.D. thesis (The Norwegian University of Science and Technology, Trondheim, Norway, 2000).

Strasser, T. A.

G. Nykolak, B. J. Eggleton, G. Lenz, T. A. Strasser, “Dispersion penalty measurements of narrow fiber Bragg gratings at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1319–1321 (1998).
[CrossRef]

Stubbe, R.

R. Stubbe, B. Sahlgren, S. Sandgren, A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), Postdeadline paper 1.

Sugden, K.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[CrossRef]

Swanton, A.

R. Kashyap, A. Swanton, D. J. Armes, “Simple technique for apodizing chirped and unchirped fiber Bragg gratings,” Electron. Lett. 32, 1226–1228 (1996).
[CrossRef]

Takiguchi, K.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), Postdeadline paper 77.

Tatay, V.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[CrossRef]

Taunay, T.

P. Niay, P. Bernage, T. Taunay, M. Douay, E. Delevanque, S. Boj, B. Poumellec, “Polarization selectivity of gratings written in Hi-Bi fibers by the external method,” IEEE Photon. Technol. Lett. 7, 391–393 (1995).
[CrossRef]

Thériault, S.

B. Malo, S. Thériault, D. C. Johnson, F. Bilodeau, J. Albert, K. O. Hill, “Apodized in-fiber Bragg grating reflectors photoimprinted using a phasemask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), Postdeadline paper 77.

Varelas, D.

Varming, P.

J. B. Jensen, N. Plougmann, H. J. Deyerl, P. Varming, J. Hübner, M. Kristensen, “Polarization control method for ultraviolet writing of advanced Bragg gratings,” Opt. Lett. 27, 1004–1006 (2002).
[CrossRef]

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen, B. Pálsdóttir, “Polarisation control of DFB fiber laser using UV-induced birefringent phase shift,” Electron. Lett. 34, 678–679 (1998).
[CrossRef]

Vengsarkar, A. M.

Westbrook, P. S.

Williams, J. A. R.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[CrossRef]

Xie, W. X.

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
[CrossRef]

Zervas, M. N.

R. Feced, M. N. Zervas, M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
[CrossRef]

K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[CrossRef]

M. J. Cole, W. H. Loh, M. N. Zervas, S. Barcelos, “Moving fiber/phasemask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phasemask,” Electron. Lett. 31, 1488–1490 (1995).
[CrossRef]

M. Ibsen, P. Petropoulos, M. N. Zervas, R. Feced, “Dispersion-free fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 54 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper MC1.

Zhang, L.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[CrossRef]

F. Floreani, L. Zhang, H. J. Deyerl, N. Plougmann, H. Ou, J. B. Jensen, M. Kristensen, “A flexible approach for the apodisation of planar waveguide Bragg gratings,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, Vol. 62 of 2003 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), paper MD15.

Zhong, Q.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

C. R. Phys. (1)

I. Riant, “Fiber Bragg gratings for optical telecommunications,” C. R. Phys. 4, 41–49 (2003).
[CrossRef]

Electron. Lett. (6)

J. Martin, F. Oulette, “Novel writing technique of long and highly reflective in-fiber gratings,” Electron. Lett. 30, 811–812 (1994).
[CrossRef]

R. Kashyap, A. Swanton, D. J. Armes, “Simple technique for apodizing chirped and unchirped fiber Bragg gratings,” Electron. Lett. 32, 1226–1228 (1996).
[CrossRef]

M. J. Cole, W. H. Loh, M. N. Zervas, S. Barcelos, “Moving fiber/phasemask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phasemask,” Electron. Lett. 31, 1488–1490 (1995).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Optimised square passband fiber Bragg grating filter with in-band flat group delay response,” Electron. Lett. 34, 800–801 (1998).
[CrossRef]

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen, B. Pálsdóttir, “Polarisation control of DFB fiber laser using UV-induced birefringent phase shift,” Electron. Lett. 34, 678–679 (1998).
[CrossRef]

B. Malo, S. Thériault, D. C. Johnson, F. Bilodeau, J. Albert, K. O. Hill, “Apodized in-fiber Bragg grating reflectors photoimprinted using a phasemask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[CrossRef]

R. Feced, M. N. Zervas, M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Niay, P. Bernage, T. Taunay, M. Douay, E. Delevanque, S. Boj, B. Poumellec, “Polarization selectivity of gratings written in Hi-Bi fibers by the external method,” IEEE Photon. Technol. Lett. 7, 391–393 (1995).
[CrossRef]

G. Nykolak, B. J. Eggleton, G. Lenz, T. A. Strasser, “Dispersion penalty measurements of narrow fiber Bragg gratings at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1319–1321 (1998).
[CrossRef]

J. Lightwave Technol. (3)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[CrossRef]

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1432 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (9)

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19, 1260–1262 (1994).
[CrossRef] [PubMed]

M. Janos, J. Canning, M. G. Sceats, “Incoherent scattering losses in optical fiber Bragg gratings,” Opt. Lett. 21, 1827–1829 (1996).
[CrossRef] [PubMed]

T. Meyer, P. A. Nicati, P. A. Robert, D. Varelas, H. G. Limberger, R. P. Salathé, “Reversibility of photoinduced birefringence in ultralow-birefringence fibers,” Opt. Lett. 21, 1661–1663 (1996).
[CrossRef] [PubMed]

F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
[CrossRef] [PubMed]

L. Poladian, “Simple grating synthesis algorithm,” Opt. Lett. 25, 787–789 (2000).
[CrossRef]

N. Plougmann, M. Kristensen, “Efficient iterative technique for designing Bragg gratings,” Opt. Lett. 29, 23–25 (2004).
[CrossRef] [PubMed]

P. S. Cross, H. Kogelnik, “Sidelobe suppression in corrugated-waveguide filters,” Opt. Lett. 1, 43–45 (1977).
[CrossRef] [PubMed]

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

J. B. Jensen, N. Plougmann, H. J. Deyerl, P. Varming, J. Hübner, M. Kristensen, “Polarization control method for ultraviolet writing of advanced Bragg gratings,” Opt. Lett. 27, 1004–1006 (2002).
[CrossRef]

Opt. Mater. (1)

P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
[CrossRef]

Opt. Quantum Electron. (1)

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[CrossRef]

Phys. Rev. B (1)

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

Other (8)

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

H. R. Sørensen, H. J. Deyerl conducted research on the polarization dependence of the photosensitivity in deuterium-loaded fibers.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), Postdeadline paper 77.

R. Stubbe, B. Sahlgren, S. Sandgren, A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), Postdeadline paper 1.

Integrated and Fiber Optical Gratings Design Software, Version 4.0 for Windows (IFO Gratings v. 4.0), Optiwave Corporation Ottawa, Ontario, Canada (2001), http://www.optiwave.com .

M. Ibsen, P. Petropoulos, M. N. Zervas, R. Feced, “Dispersion-free fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 54 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper MC1.

J. Skaar, “Synthesis and characterization of fiber Bragg gratings,” Ph.D. thesis (The Norwegian University of Science and Technology, Trondheim, Norway, 2000).

F. Floreani, L. Zhang, H. J. Deyerl, N. Plougmann, H. Ou, J. B. Jensen, M. Kristensen, “A flexible approach for the apodisation of planar waveguide Bragg gratings,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, Vol. 62 of 2003 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), paper MD15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Illustration of polarization-controlled grating writing. A polarization beam splitter with a divergence angle of θ scans along the phase mask together with the linearly polarized UV beam (E). Two spatially separated Bragg gratings are generated in the core of the fiber by the diverging s- and p-polarized fractions of the UV light. A polarizer mounted in a rotation stage controls the polarization angle, α, of the UV beam. The total fluence (F tot) is the sum of the fluence in the p and s polarizations F p = cos2 α and F s = F sin2 α, respectively. The average fluence is always constant because cos2 α + sin2 α = 1. By choosing the proper distance between the phase mask and the fiber (d air), one can realize a phase shift of π between the two gratings induced by s and p polarizations.

Fig. 2
Fig. 2

(a) Schematic representation of the refractive-index profile (solid curve) of a sinc-apodized grating along with the normalized fluence profiles for p and s polarizations. For a typical fiber grating, the period would be much smaller compared with the grating length. (b) The resulting apodization profile [A(z)], and (c) corresponding polarizer angle α(z) = 1/2 arccos [A(z)]; the dashed line at α = 45° marks the crossover between segments of the grating with different phase.

Fig. 3
Fig. 3

(a) Series of calibration sinc gratings written at different phase-mask-to-fiber distances at optimum polarizer angles. (b) Series of calibration sinc gratings at different polarizer angle offsets. The resulting grating spectra are offset by ±10 dB for clarity compared with the 70 μm and 0.0 deg, respectively.

Fig. 4
Fig. 4

(a) UV-induced effective index change in a pristine highly nonlinear fiber as a function of the accumulated fluence for different polarizations. Error bars are not included for clarity. The measurement uncertainty is ±2%. (b) The UV-induced change in index modulation (Δn mod, open circles) and effective index (Δn eff, filled circles) in D2-loaded HNLF.

Fig. 5
Fig. 5

Birefringence change during irradiation with s- or p-polarized UV radiation.

Fig. 6
Fig. 6

Transmission spectra for light polarized along the two orthogonal birefringent axes of a grating written in deuterium-loaded HNLF (a) written with s-polarized light and (b) after a postexposure with p-polarized light 10% of the initial fluence. The inset shows a compressed transmission spectrum.

Fig. 7
Fig. 7

Experimental (solid curve) and theoretical (dashed curve) reflection spectra of a 2.5-mm-long uniform (nonapodized) grating. The peak reflectivity is 30%.

Fig. 8
Fig. 8

Experimental (solid curve) and theoretical (dashed curve) reflection spectra of a 23-mm-long Gaussian apodized grating. The peak reflectivity is 90%.

Fig. 9
Fig. 9

Experimental (solid curve) and theoretical (dashed curve) transmission spectra of a 23-mm-long Gaussian apodized grating.

Fig. 10
Fig. 10

Experimental (solid curve) and theoretical (dashed curve) reflection spectra and measured (points) and simulated (dotted curve) group delay of a 20-mm-long low-dispersion grating. The peak reflectivity is 99.7%.

Fig. 11
Fig. 11

Experimental (solid curve) and theoretical (dashed curve) reflection spectra and measured (points) and simulated (dotted curve) group delay for a 20-mm-long chirped Gaussian grating. The peak reflectivity is 93%.

Fig. 12
Fig. 12

Reflection spectrum of a Gaussian apodized planar waveguide grating. The solid curve and dashed curves indicate the TM and TE fundamental modes, respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

4θdair+rfibernclad=Λmask,
Δnz=ηF+ηF cos2αcos2πzΛgrating+ϕ0,
Δnz=Δnavez+nmodzcos2πΛgrating z+ϕ0,
Az=sin2πz-L/2sL2πz-L/2sLexp-ln 22z-L/2gL2.
Δneff=ΔλBraggΛmask.
Δnbr=λ2πL |phaseΛ1-phaseΛ2|,
detTtT-10-ΛI=0.
ΔnbrΔλBraggneffλBragg,

Metrics