Abstract

The optical properties of mineral particles suspended in seawater were calculated from the Mie scattering theory for different size distributions and complex refractive indices of the particles. The ratio of the spectral backscattering coefficient to the sum of the spectral absorption and backscattering coefficients of seawater, b b(λ)/[a(λ) + b b(λ)], was analyzed as a proxy for ocean reflectance for varying properties and concentrations of mineral particles. Given the plausible range of variability in the particle size distribution and the refractive index, the general parameterizations of the absorption and scattering properties of mineral particles and their effects on ocean reflectance in terms of particle mass concentration alone are inadequate. The variations in the particle size distribution and the refractive index must be taken into account. The errors in chlorophyll estimation obtained from the remote sensing algorithms that are due to the presence of mineral particles can be very large. For example, when the mineral concentration is 1 g m-3 and the chlorophyll a concentration is low (0.05 mg m-3), current global algorithms based on a blue-to-green reflectance ratio can produce a chlorophyll overestimation ranging from ∼50% to as much as 20-fold.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Babin, D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
    [CrossRef]
  2. D. Stramski, S. B. Woźniak, P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
    [CrossRef]
  3. R. J. Gibbs, “Transport phases of transition metals in the Amazon and Yukon Rivers,” Geol. Soc. Am. Bull. 88, 829–843 (1977).
    [CrossRef]
  4. B. G. Li, D. Eisma, Q. Ch. Xie, J. Kalf, Y. Li, X. Xia, “Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China,” J. Sea Res. 42, 105–116 (1999).
    [CrossRef]
  5. J. M. Prospero, “Mineral-aerosol transport to the North Atlantic and North Pacific: the impact of African and Asian sources,” in The Long Range Atmospheric Transport of Natural and Contaminant Substances, A. H. Knap, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1990), pp. 59–86.
    [CrossRef]
  6. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 40, 709–722 (1977).
    [CrossRef]
  7. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery—a Review. Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).
    [CrossRef]
  8. E. M. M. Novo, J. D. Hanson, P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sens. 10, 1283–1289 (1989).
    [CrossRef]
  9. Z. Chen, P. J. Curran, J. D. Hansom, “Derivative reflectance spectroscopy to estimate suspended sediment concentration,” Remote Sens. Environ. 40, 67–77 (1992).
    [CrossRef]
  10. L. Han, “Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters,” Photogramm. Eng. Remote Sens. 63, 701–705 (1997).
  11. G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
    [CrossRef]
  12. K. Y. H. Gin, S. T. Koh, I. I. Lin, “Study of the effects of suspended marine clay on the reflectance spectra of phytoplankton,” Int. J. Remote Sens. 23, 2163–2178 (2002).
    [CrossRef]
  13. R. P. Stumpf, J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary,” J. Geophys. Res. 94, 14363–14371 (1989).
    [CrossRef]
  14. P. J. Curran, J. D. Hansom, S. E. Plummer, M. I. Pedley, “Multispectral remote sensing of nearshore suspended sediments: a pilot study,” Int. J. Remote Sens. 8, 103–112 (1987).
    [CrossRef]
  15. Y.-H. Ahn, J. Moon, S. Gallegos, “Development of suspended particulate matter algorithms for ocean color remote sensing,” Korean J. Remote Sens. 17, 285–295 (2001).
  16. D. Doxaran, J.-M. Froidefond, P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002).
    [CrossRef]
  17. J. Fisher, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
    [CrossRef]
  18. S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
    [CrossRef]
  19. S. Tassan, “Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters,” Appl. Opt. 33, 2369–2378 (1994).
    [CrossRef] [PubMed]
  20. F. Lahet, S. Ouillon, P. Forget, “A three-component model of ocean color and its application in the Ebro river mouth area,” Remote Sens. Environ. 72, 181–190 (2000).
    [CrossRef]
  21. R. W. Gould, R. A. Arnone, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ. 61, 290–301 (1997).
    [CrossRef]
  22. P. Forget, S. Ouillon, F. Lahet, P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68, 264–272 (1999).
    [CrossRef]
  23. D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
    [CrossRef]
  24. R. P. Stumpf, J. R. Pennock, “Remote estimation of the diffuse attenuation coefficient in a moderately turbid estuary,” Remote Sens. Environ. 38, 183–191 (1991).
    [CrossRef]
  25. M. Sydor, R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
    [CrossRef]
  26. H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).
  27. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  28. A. Morel, A. Bricaud, “Inherent optical properties of algal cells including picoplankton: theoretical and experimental results,” in Photosynthetic Picoplankton, T. Platt, W. K. W. Li, eds., Can. Bull. Fish. Aquat. Sci.214, 521–559 (1986).
  29. A. Bricaud, A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986).
    [CrossRef] [PubMed]
  30. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
    [CrossRef]
  31. H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between inherent and apparent optical properties of a flat, homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
    [CrossRef] [PubMed]
  32. A. Morel, B. Gentili, “Diffuse reflectance in oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
    [CrossRef] [PubMed]
  33. R. A. Reynolds, D. Stramski, B. G. Mitchell, “A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean,” J. Geophys. Res. 106, 7125–7138 (2001).
    [CrossRef]
  34. P. F. Kerr, Optical Mineralogy (McGraw-Hill, New York, 1977).
  35. L. G. Berry, B. Mason, Mineralogy: Concepts, Descriptions, Determinations (Freeman, San Francisco, 1959).
  36. I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423–9444 (1999).
    [CrossRef]
  37. D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
    [CrossRef]
  38. E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan dust,” J. Geophys. Res. 82, 3153–3160 (1997).
    [CrossRef]
  39. H. Bader, “The hyperbolic distribution of particle size,” J. Geophys. Res. 75, 2822–2830 (1970).
    [CrossRef]
  40. D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
    [CrossRef]
  41. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  42. F. M. Sogandares, E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
    [CrossRef]
  43. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  44. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. Steemann Nielsen, eds. (Academic, London, 1974), pp. 1–24.
  45. A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
    [CrossRef]
  46. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
    [CrossRef]
  47. L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions as compared to that of solutions,” Biochim. Biophys. Acta 19, 1–12 (1956).
    [CrossRef] [PubMed]
  48. A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28, 1375–1393 (1981).
    [CrossRef]
  49. D. G. Bowers, G. E. L. Harker, B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17, 2449–2460 (1996).
    [CrossRef]
  50. D. Eisma, Suspended Matter in the Aquatic Environment (Springer-Verlag, Berlin, 1993).
    [CrossRef]
  51. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. E. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
    [CrossRef]
  52. S. B. Hooker, C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000).
    [CrossRef]
  53. W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
    [CrossRef]
  54. J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.
  55. D. K. Clark, Oceanic Research and Applications Division, National Oceanic and Atmospheric Administration, Camp Springs, Md. 20746 (personal communication, 2002).

2004

M. Babin, D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
[CrossRef]

D. Stramski, S. B. Woźniak, P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

2003

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

2002

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).

D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

K. Y. H. Gin, S. T. Koh, I. I. Lin, “Study of the effects of suspended marine clay on the reflectance spectra of phytoplankton,” Int. J. Remote Sens. 23, 2163–2178 (2002).
[CrossRef]

D. Doxaran, J.-M. Froidefond, P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002).
[CrossRef]

2001

Y.-H. Ahn, J. Moon, S. Gallegos, “Development of suspended particulate matter algorithms for ocean color remote sensing,” Korean J. Remote Sens. 17, 285–295 (2001).

R. A. Reynolds, D. Stramski, B. G. Mitchell, “A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean,” J. Geophys. Res. 106, 7125–7138 (2001).
[CrossRef]

D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

2000

F. Lahet, S. Ouillon, P. Forget, “A three-component model of ocean color and its application in the Ebro river mouth area,” Remote Sens. Environ. 72, 181–190 (2000).
[CrossRef]

S. B. Hooker, C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000).
[CrossRef]

1999

B. G. Li, D. Eisma, Q. Ch. Xie, J. Kalf, Y. Li, X. Xia, “Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China,” J. Sea Res. 42, 105–116 (1999).
[CrossRef]

G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
[CrossRef]

I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423–9444 (1999).
[CrossRef]

P. Forget, S. Ouillon, F. Lahet, P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68, 264–272 (1999).
[CrossRef]

1998

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. E. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

1997

M. Sydor, R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
[CrossRef]

E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan dust,” J. Geophys. Res. 82, 3153–3160 (1997).
[CrossRef]

R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

F. M. Sogandares, E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
[CrossRef]

L. Han, “Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters,” Photogramm. Eng. Remote Sens. 63, 701–705 (1997).

R. W. Gould, R. A. Arnone, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ. 61, 290–301 (1997).
[CrossRef]

1996

D. G. Bowers, G. E. L. Harker, B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17, 2449–2460 (1996).
[CrossRef]

1994

1993

1992

Z. Chen, P. J. Curran, J. D. Hansom, “Derivative reflectance spectroscopy to estimate suspended sediment concentration,” Remote Sens. Environ. 40, 67–77 (1992).
[CrossRef]

1991

R. P. Stumpf, J. R. Pennock, “Remote estimation of the diffuse attenuation coefficient in a moderately turbid estuary,” Remote Sens. Environ. 38, 183–191 (1991).
[CrossRef]

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

1989

E. M. M. Novo, J. D. Hanson, P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sens. 10, 1283–1289 (1989).
[CrossRef]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

R. P. Stumpf, J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary,” J. Geophys. Res. 94, 14363–14371 (1989).
[CrossRef]

1988

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
[CrossRef]

1987

P. J. Curran, J. D. Hansom, S. E. Plummer, M. I. Pedley, “Multispectral remote sensing of nearshore suspended sediments: a pilot study,” Int. J. Remote Sens. 8, 103–112 (1987).
[CrossRef]

J. Fisher, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
[CrossRef]

1986

1981

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28, 1375–1393 (1981).
[CrossRef]

1977

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 40, 709–722 (1977).
[CrossRef]

R. J. Gibbs, “Transport phases of transition metals in the Amazon and Yukon Rivers,” Geol. Soc. Am. Bull. 88, 829–843 (1977).
[CrossRef]

1975

1970

H. Bader, “The hyperbolic distribution of particle size,” J. Geophys. Res. 75, 2822–2830 (1970).
[CrossRef]

1956

L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions as compared to that of solutions,” Biochim. Biophys. Acta 19, 1–12 (1956).
[CrossRef] [PubMed]

Abbott, M. R.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Ahn, Y.-H.

Y.-H. Ahn, J. Moon, S. Gallegos, “Development of suspended particulate matter algorithms for ocean color remote sensing,” Korean J. Remote Sens. 17, 285–295 (2001).

Aiken, J.

G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
[CrossRef]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

Antoine, D.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).

Arnone, R. A.

M. Sydor, R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
[CrossRef]

R. W. Gould, R. A. Arnone, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ. 61, 290–301 (1997).
[CrossRef]

Arrigo, K. R.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Babin, M.

M. Babin, D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

Bader, H.

H. Bader, “The hyperbolic distribution of particle size,” J. Geophys. Res. 75, 2822–2830 (1970).
[CrossRef]

Baker, K. S.

Balch, W. M.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Barton, I.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Berry, L. G.

L. G. Berry, B. Mason, Mineralogy: Concepts, Descriptions, Determinations (Freeman, San Francisco, 1959).

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bowers, D. G.

D. G. Bowers, G. E. L. Harker, B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17, 2449–2460 (1996).
[CrossRef]

Bricaud, A.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).

D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

A. Bricaud, A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986).
[CrossRef] [PubMed]

A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28, 1375–1393 (1981).
[CrossRef]

A. Morel, A. Bricaud, “Inherent optical properties of algal cells including picoplankton: theoretical and experimental results,” in Photosynthetic Picoplankton, T. Platt, W. K. W. Li, eds., Can. Bull. Fish. Aquat. Sci.214, 521–559 (1986).

Broche, P.

P. Forget, S. Ouillon, F. Lahet, P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68, 264–272 (1999).
[CrossRef]

Brown, O. B.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between inherent and apparent optical properties of a flat, homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef] [PubMed]

Campbell, J. W.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Carder, K. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. E. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Carder, K. L.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Castaing, P.

D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

D. Doxaran, J.-M. Froidefond, P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002).
[CrossRef]

Chavez, F. P.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Chen, Z.

Z. Chen, P. J. Curran, J. D. Hansom, “Derivative reflectance spectroscopy to estimate suspended sediment concentration,” Remote Sens. Environ. 40, 67–77 (1992).
[CrossRef]

Clark, D. K.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

D. K. Clark, Oceanic Research and Applications Division, National Oceanic and Atmospheric Administration, Camp Springs, Md. 20746 (personal communication, 2002).

Claustre, H.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

Cota, G. F.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Culver, M.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Curran, P. J.

Z. Chen, P. J. Curran, J. D. Hansom, “Derivative reflectance spectroscopy to estimate suspended sediment concentration,” Remote Sens. Environ. 40, 67–77 (1992).
[CrossRef]

E. M. M. Novo, J. D. Hanson, P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sens. 10, 1283–1289 (1989).
[CrossRef]

P. J. Curran, J. D. Hansom, S. E. Plummer, M. I. Pedley, “Multispectral remote sensing of nearshore suspended sediments: a pilot study,” Int. J. Remote Sens. 8, 103–112 (1987).
[CrossRef]

Doerffer, R.

J. Fisher, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
[CrossRef]

Doxaran, D.

D. Doxaran, J.-M. Froidefond, P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002).
[CrossRef]

D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

Duysens, L. N. M.

L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions as compared to that of solutions,” Biochim. Biophys. Acta 19, 1–12 (1956).
[CrossRef] [PubMed]

Eisma, D.

B. G. Li, D. Eisma, Q. Ch. Xie, J. Kalf, Y. Li, X. Xia, “Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China,” J. Sea Res. 42, 105–116 (1999).
[CrossRef]

D. Eisma, Suspended Matter in the Aquatic Environment (Springer-Verlag, Berlin, 1993).
[CrossRef]

Esaias, W. E.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Evans, R. H.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Fell, F.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Fisher, J.

J. Fisher, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
[CrossRef]

Flatau, P. J.

D. Stramski, S. B. Woźniak, P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

Forget, P.

F. Lahet, S. Ouillon, P. Forget, “A three-component model of ocean color and its application in the Ebro river mouth area,” Remote Sens. Environ. 72, 181–190 (2000).
[CrossRef]

P. Forget, S. Ouillon, F. Lahet, P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68, 264–272 (1999).
[CrossRef]

Fournier-Sicre, V.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Froidefond, J.-M.

D. Doxaran, J.-M. Froidefond, P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002).
[CrossRef]

D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

Fry, E. S.

Gallegos, S.

Y.-H. Ahn, J. Moon, S. Gallegos, “Development of suspended particulate matter algorithms for ocean color remote sensing,” Korean J. Remote Sens. 17, 285–295 (2001).

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. E. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Gentili, B.

Gibbs, R. J.

R. J. Gibbs, “Transport phases of transition metals in the Amazon and Yukon Rivers,” Geol. Soc. Am. Bull. 88, 829–843 (1977).
[CrossRef]

Gillette, D. A.

E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan dust,” J. Geophys. Res. 82, 3153–3160 (1997).
[CrossRef]

Gin, K. Y. H.

K. Y. H. Gin, S. T. Koh, I. I. Lin, “Study of the effects of suspended marine clay on the reflectance spectra of phytoplankton,” Int. J. Remote Sens. 23, 2163–2178 (2002).
[CrossRef]

Gordon, H. R.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between inherent and apparent optical properties of a flat, homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef] [PubMed]

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery—a Review. Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).
[CrossRef]

Gould, R. W.

R. W. Gould, R. A. Arnone, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ. 61, 290–301 (1997).
[CrossRef]

Han, L.

L. Han, “Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters,” Photogramm. Eng. Remote Sens. 63, 701–705 (1997).

Hansom, J. D.

Z. Chen, P. J. Curran, J. D. Hansom, “Derivative reflectance spectroscopy to estimate suspended sediment concentration,” Remote Sens. Environ. 40, 67–77 (1992).
[CrossRef]

P. J. Curran, J. D. Hansom, S. E. Plummer, M. I. Pedley, “Multispectral remote sensing of nearshore suspended sediments: a pilot study,” Int. J. Remote Sens. 8, 103–112 (1987).
[CrossRef]

Hanson, J. D.

E. M. M. Novo, J. D. Hanson, P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sens. 10, 1283–1289 (1989).
[CrossRef]

Harding, L.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Harker, G. E. L.

D. G. Bowers, G. E. L. Harker, B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17, 2449–2460 (1996).
[CrossRef]

Hoge, F. E.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Hooker, S. B.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).

S. B. Hooker, C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000).
[CrossRef]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Jacobs, M. M.

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. E. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Kalf, J.

B. G. Li, D. Eisma, Q. Ch. Xie, J. Kalf, Y. Li, X. Xia, “Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China,” J. Sea Res. 42, 105–116 (1999).
[CrossRef]

Kerr, P. F.

P. F. Kerr, Optical Mineralogy (McGraw-Hill, New York, 1977).

Kiefer, D. A.

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

Koh, S. T.

K. Y. H. Gin, S. T. Koh, I. I. Lin, “Study of the effects of suspended marine clay on the reflectance spectra of phytoplankton,” Int. J. Remote Sens. 23, 2163–2178 (2002).
[CrossRef]

Lahet, F.

F. Lahet, S. Ouillon, P. Forget, “A three-component model of ocean color and its application in the Ebro river mouth area,” Remote Sens. Environ. 72, 181–190 (2000).
[CrossRef]

P. Forget, S. Ouillon, F. Lahet, P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68, 264–272 (1999).
[CrossRef]

Lavender, S.

D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

Lavender, S. J.

G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
[CrossRef]

Leblanc, K.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).

Letelier, R.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Li, B. G.

B. G. Li, D. Eisma, Q. Ch. Xie, J. Kalf, Y. Li, X. Xia, “Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China,” J. Sea Res. 42, 105–116 (1999).
[CrossRef]

Li, Y.

B. G. Li, D. Eisma, Q. Ch. Xie, J. Kalf, Y. Li, X. Xia, “Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China,” J. Sea Res. 42, 105–116 (1999).
[CrossRef]

Lin, I. I.

K. Y. H. Gin, S. T. Koh, I. I. Lin, “Study of the effects of suspended marine clay on the reflectance spectra of phytoplankton,” Int. J. Remote Sens. 23, 2163–2178 (2002).
[CrossRef]

Magnuson, A.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Maritorena, S.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. E. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Mason, B.

L. G. Berry, B. Mason, Mineralogy: Concepts, Descriptions, Determinations (Freeman, San Francisco, 1959).

McClain, C.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. E. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

McClain, C. R.

S. B. Hooker, C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000).
[CrossRef]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Minnett, P. J.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Mitchell, B. G.

R. A. Reynolds, D. Stramski, B. G. Mitchell, “A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean,” J. Geophys. Res. 106, 7125–7138 (2001).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. E. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Moon, J.

Y.-H. Ahn, J. Moon, S. Gallegos, “Development of suspended particulate matter algorithms for ocean color remote sensing,” Korean J. Remote Sens. 17, 285–295 (2001).

Moore, G. F.

G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
[CrossRef]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Morel, A.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).

D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

A. Morel, B. Gentili, “Diffuse reflectance in oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
[CrossRef]

A. Bricaud, A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986).
[CrossRef] [PubMed]

A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28, 1375–1393 (1981).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 40, 709–722 (1977).
[CrossRef]

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery—a Review. Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).
[CrossRef]

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. Steemann Nielsen, eds. (Academic, London, 1974), pp. 1–24.

A. Morel, A. Bricaud, “Inherent optical properties of algal cells including picoplankton: theoretical and experimental results,” in Photosynthetic Picoplankton, T. Platt, W. K. W. Li, eds., Can. Bull. Fish. Aquat. Sci.214, 521–559 (1986).

Müller-Karger, F.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Novo, E. M. M.

E. M. M. Novo, J. D. Hanson, P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sens. 10, 1283–1289 (1989).
[CrossRef]

O’Brien, M. C.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. E. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Oubelkheir, K.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).

Ouillon, S.

F. Lahet, S. Ouillon, P. Forget, “A three-component model of ocean color and its application in the Ebro river mouth area,” Remote Sens. Environ. 72, 181–190 (2000).
[CrossRef]

P. Forget, S. Ouillon, F. Lahet, P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68, 264–272 (1999).
[CrossRef]

Patterson, E. M.

E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan dust,” J. Geophys. Res. 82, 3153–3160 (1997).
[CrossRef]

Pedley, M. I.

P. J. Curran, J. D. Hansom, S. E. Plummer, M. I. Pedley, “Multispectral remote sensing of nearshore suspended sediments: a pilot study,” Int. J. Remote Sens. 8, 103–112 (1987).
[CrossRef]

Pennock, J. R.

R. P. Stumpf, J. R. Pennock, “Remote estimation of the diffuse attenuation coefficient in a moderately turbid estuary,” Remote Sens. Environ. 38, 183–191 (1991).
[CrossRef]

R. P. Stumpf, J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary,” J. Geophys. Res. 94, 14363–14371 (1989).
[CrossRef]

Phinney, D.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Plummer, S. E.

P. J. Curran, J. D. Hansom, S. E. Plummer, M. I. Pedley, “Multispectral remote sensing of nearshore suspended sediments: a pilot study,” Int. J. Remote Sens. 8, 103–112 (1987).
[CrossRef]

Pope, R. M.

Prieur, L.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 40, 709–722 (1977).
[CrossRef]

Prospero, J. M.

J. M. Prospero, “Mineral-aerosol transport to the North Atlantic and North Pacific: the impact of African and Asian sources,” in The Long Range Atmospheric Transport of Natural and Contaminant Substances, A. H. Knap, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1990), pp. 59–86.
[CrossRef]

Queguiner, B.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).

Reynolds, R. A.

R. A. Reynolds, D. Stramski, B. G. Mitchell, “A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean,” J. Geophys. Res. 106, 7125–7138 (2001).
[CrossRef]

Sathyendranath, S.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

Siegel, D. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. E. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Smith, R. C.

Sogandares, F. M.

Sokolik, I. N.

I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423–9444 (1999).
[CrossRef]

Stephan, B.

D. G. Bowers, G. E. L. Harker, B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17, 2449–2460 (1996).
[CrossRef]

Stockton, B. H.

E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan dust,” J. Geophys. Res. 82, 3153–3160 (1997).
[CrossRef]

Stramski, D.

M. Babin, D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
[CrossRef]

D. Stramski, S. B. Woźniak, P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

R. A. Reynolds, D. Stramski, B. G. Mitchell, “A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean,” J. Geophys. Res. 106, 7125–7138 (2001).
[CrossRef]

D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

Strutton, P.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Stumpf, R. P.

R. P. Stumpf, J. R. Pennock, “Remote estimation of the diffuse attenuation coefficient in a moderately turbid estuary,” Remote Sens. Environ. 38, 183–191 (1991).
[CrossRef]

R. P. Stumpf, J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary,” J. Geophys. Res. 94, 14363–14371 (1989).
[CrossRef]

Sydor, M.

Tassan, S.

Toole, D.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

Toon, O. B.

I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423–9444 (1999).
[CrossRef]

Wozniak, S. B.

D. Stramski, S. B. Woźniak, P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

Xia, X.

B. G. Li, D. Eisma, Q. Ch. Xie, J. Kalf, Y. Li, X. Xia, “Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China,” J. Sea Res. 42, 105–116 (1999).
[CrossRef]

Xie, Q. Ch.

B. G. Li, D. Eisma, Q. Ch. Xie, J. Kalf, Y. Li, X. Xia, “Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China,” J. Sea Res. 42, 105–116 (1999).
[CrossRef]

Adv. Space Res.

J. Fisher, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
[CrossRef]

Appl. Opt.

S. Tassan, “Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters,” Appl. Opt. 33, 2369–2378 (1994).
[CrossRef] [PubMed]

M. Sydor, R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
[CrossRef]

H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between inherent and apparent optical properties of a flat, homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance in oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

F. M. Sogandares, E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

A. Bricaud, A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986).
[CrossRef] [PubMed]

Biochim. Biophys. Acta

L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions as compared to that of solutions,” Biochim. Biophys. Acta 19, 1–12 (1956).
[CrossRef] [PubMed]

Deep-Sea Res.

A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28, 1375–1393 (1981).
[CrossRef]

Geol. Soc. Am. Bull.

R. J. Gibbs, “Transport phases of transition metals in the Amazon and Yukon Rivers,” Geol. Soc. Am. Bull. 88, 829–843 (1977).
[CrossRef]

Geophys. Res. Lett.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).

IEEE Trans. Geosci. Remote Sens.

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Int. J. Remote Sens.

D. G. Bowers, G. E. L. Harker, B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17, 2449–2460 (1996).
[CrossRef]

E. M. M. Novo, J. D. Hanson, P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sens. 10, 1283–1289 (1989).
[CrossRef]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

D. Doxaran, J.-M. Froidefond, P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002).
[CrossRef]

G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
[CrossRef]

K. Y. H. Gin, S. T. Koh, I. I. Lin, “Study of the effects of suspended marine clay on the reflectance spectra of phytoplankton,” Int. J. Remote Sens. 23, 2163–2178 (2002).
[CrossRef]

P. J. Curran, J. D. Hansom, S. E. Plummer, M. I. Pedley, “Multispectral remote sensing of nearshore suspended sediments: a pilot study,” Int. J. Remote Sens. 8, 103–112 (1987).
[CrossRef]

J. Geophys. Res.

R. P. Stumpf, J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary,” J. Geophys. Res. 94, 14363–14371 (1989).
[CrossRef]

E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan dust,” J. Geophys. Res. 82, 3153–3160 (1997).
[CrossRef]

H. Bader, “The hyperbolic distribution of particle size,” J. Geophys. Res. 75, 2822–2830 (1970).
[CrossRef]

R. A. Reynolds, D. Stramski, B. G. Mitchell, “A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean,” J. Geophys. Res. 106, 7125–7138 (2001).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. E. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
[CrossRef]

I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423–9444 (1999).
[CrossRef]

J. Sea Res.

B. G. Li, D. Eisma, Q. Ch. Xie, J. Kalf, Y. Li, X. Xia, “Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China,” J. Sea Res. 42, 105–116 (1999).
[CrossRef]

Korean J. Remote Sens.

Y.-H. Ahn, J. Moon, S. Gallegos, “Development of suspended particulate matter algorithms for ocean color remote sensing,” Korean J. Remote Sens. 17, 285–295 (2001).

Limnol. Oceanogr.

M. Babin, D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
[CrossRef]

D. Stramski, S. B. Woźniak, P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 40, 709–722 (1977).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Photogramm. Eng. Remote Sens.

L. Han, “Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters,” Photogramm. Eng. Remote Sens. 63, 701–705 (1997).

Prog. Oceanogr.

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

S. B. Hooker, C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000).
[CrossRef]

Remote Sens. Environ.

F. Lahet, S. Ouillon, P. Forget, “A three-component model of ocean color and its application in the Ebro river mouth area,” Remote Sens. Environ. 72, 181–190 (2000).
[CrossRef]

R. W. Gould, R. A. Arnone, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ. 61, 290–301 (1997).
[CrossRef]

P. Forget, S. Ouillon, F. Lahet, P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68, 264–272 (1999).
[CrossRef]

D. Doxaran, J.-M. Froidefond, S. Lavender, P. Castaing, “Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
[CrossRef]

R. P. Stumpf, J. R. Pennock, “Remote estimation of the diffuse attenuation coefficient in a moderately turbid estuary,” Remote Sens. Environ. 38, 183–191 (1991).
[CrossRef]

Z. Chen, P. J. Curran, J. D. Hansom, “Derivative reflectance spectroscopy to estimate suspended sediment concentration,” Remote Sens. Environ. 40, 67–77 (1992).
[CrossRef]

Other

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery—a Review. Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).
[CrossRef]

J. M. Prospero, “Mineral-aerosol transport to the North Atlantic and North Pacific: the impact of African and Asian sources,” in The Long Range Atmospheric Transport of Natural and Contaminant Substances, A. H. Knap, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1990), pp. 59–86.
[CrossRef]

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

A. Morel, A. Bricaud, “Inherent optical properties of algal cells including picoplankton: theoretical and experimental results,” in Photosynthetic Picoplankton, T. Platt, W. K. W. Li, eds., Can. Bull. Fish. Aquat. Sci.214, 521–559 (1986).

P. F. Kerr, Optical Mineralogy (McGraw-Hill, New York, 1977).

L. G. Berry, B. Mason, Mineralogy: Concepts, Descriptions, Determinations (Freeman, San Francisco, 1959).

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds. NASA Tech. Memo. 2000-206892 (NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.

D. K. Clark, Oceanic Research and Applications Division, National Oceanic and Atmospheric Administration, Camp Springs, Md. 20746 (personal communication, 2002).

D. Eisma, Suspended Matter in the Aquatic Environment (Springer-Verlag, Berlin, 1993).
[CrossRef]

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. Steemann Nielsen, eds. (Academic, London, 1974), pp. 1–24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Block diagram of the model.

Fig. 2
Fig. 2

Input data for the Mie scattering calculations for mineral particles. (a) and (b) Real part of the refractive index (relative to water) versus particle density for different mineral species. Open circles, data from Table 1; solid line, the best-fit linear regression; filled circles, the three values selected for our modeling. (c) Spectra of the imaginary part of the refractive index(relative to water) used in our modeling. Solid line and dashed curve represent the low- and high-n′ cases, respectively. (d) Junge-type differential size distribution of particles with the three values of slope j used in our modeling.

Fig. 3
Fig. 3

(a) Absorption coefficient of chlorophyll particles according to the empirical formula from Bricaud et al.45 for the three chlorophyll a concentrations, Chl = 0.05 mg m-3, Chl = 0.5 mg m-3, and Chl = 5 mg m-3. (b) As (a), but for the backscattering coefficient according to the formula given by Morel.46

Fig. 4
Fig. 4

(a) Effects of the real part of the refractive index, n, on the mass-specific absorption coefficient of mineral particles for a given slope of particle size distribution, j = -4. These effects are shown for the low-n′ case (solid curves) and the high-n′ case (dashed curves). (b) Effects of the slope of size distribution, j, on the mass-specific absorption coefficient of mineral particles for a given value of the real part of the refractive index, n = 1.18. These effects are shown for the low- and high-n′ cases (solid and dashed curves, respectively). (c) and (d) As (a) and (b), but for the mass-specific backscattering coefficient of the mineral particles. (e) and (f) As (a) and (b), but for the mass-specific scattering coefficient of the mineral particles. The curves for D max = 50 μm, D max = 10 μm, and n = 1.12 are included to show the sensitivity of results to the relatively small values of D max and n (see text for details).

Fig. 5
Fig. 5

Spectral curves of the b b /(a + b b ) ratio calculated for seawater with different concentrations of mineral particles that are characterized by the base values of the slope of size distribution, j = -4, and the real part of the refractive index, n = 1.18 (dashed curves). The mineral concentration is indicated by the C values: (a) represents the low-n′ case and (b) represents the high-n′ case. The spectral curves of the b b /(a + b b ) ratio for pure seawater are also presented in both (a) and (b) as solid curves.

Fig. 6
Fig. 6

Spectral curves of the b b /(a + b b ) ratio calculated for seawater with different concentrations of mineral particles, C, for four combinations of the slope of size distribution, j, and the real part of the refractive index, n (the relevant values are indicated in each panel). The thin solid curves represent the low-n′ case and the dashed curves the high-n′ case. Pure seawater is shown as the thick solid curve.

Fig. 7
Fig. 7

Spectral curves of the b b /(a + b b ) ratio for the various cases when mineral particles at different concentrations C are accompanied by the presence of chlorophyll particles at low [(a) and (b)], medium [(c) and (d)], and high [(e) and (f)] chlorophyll a concentrations, as indicated by the values of Chl. The mineral particles are characterized by the base values of the slope of the size distribution, j = -4, and the real part of the refractive index, n = 1.18. The left-hand panels are for the low-n′ case, and the right-hand panels are for the high-n′ case. The solid curves represent seawater with chlorophyll particles only (no minerals in water).

Fig. 8
Fig. 8

Ratio of Chl estimated from the OC2 algorithm when minerals are present in water to Chl estimated with no minerals in water as a function of mineral particle concentration. (a) The low concentration of chlorophyll a, Chl = 0.05 mg m-3; (b) the medium pigment concentration, Chl = 0.5 mg m-3; and (c) the relatively high pigment concentration, Chl = 5 mg m-3. The size distribution and refractive-index parameters that define the mineral particle assemblages are shown in (a).

Fig. 9
Fig. 9

Same as Fig. 8, but for the OC4 algorithm.

Fig. 10
Fig. 10

Same as Fig. 8, but for the chlor_MODIS algorithm.

Tables (2)

Tables Icon

Table 1 Real Part of the Refractive Index n (Relative to Water) for Various Types of Mineral Particles and the Corresponding Values of the Average Particle Density ρa

Tables Icon

Table 2 Band Ratios and Coefficients of Standard Chlorophyll Algorithmsa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

am*λ=3Q¯aλ2ρDminDmax NDD2dDDminDmax NDD3dD,
bb,m*λ=3Q¯bbλ2ρDminDmax NDD2dDDminDmax NDD3dD.
aλ=awλ+am*λC+apλ,
bbλ=bb,wλ+bb,m*λC+bb,pλ,
Rrsλ  bb,wλ+bb,pλ+bb,m*λCawλ+apλ+am*λC+bb,wλ+bb,pλ+bb,m*λC.
n=0.1475×10-6ρ+0.7717,
ND=KDj.
apλ=ApλChlEpλ,
bb,pλ=0.3Chl0.62-bw5500.002+0.020.5-0.25 log Chl550λ,
Chl=10a0+a1Rr+a2Rr2+a3Rr3+a4,

Metrics