Abstract

We propose a method to improve the optical resolution to read out optical disks, without making the spot size on the disk smaller than the diffraction limit. The idea is to reconstruct the bit pattern from the complete field profile (including amplitude and phase) of the light reflected from the disk. We measure the phase and amplitude information by picking up the wave front into different modes of a bimodal waveguide. Once picked up, these modes can be split by a photonic integrated circuit to be measured by separate detectors. By combining the information from the responses from the different modes, we can improve the bit error rate substantially.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Schouhamer Immink, Principles of Optical Disc Systems (Hilger, Bristol, UK, 1985).
  2. M. Mansuripur, G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
    [CrossRef]
  3. A. J. den Dekker, A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14, 547–557 (1997).
    [CrossRef]
  4. H. Awano, N. Ohta, “Magnetooptical recording technology toward 100 Gb/in2,” IEEE J. Sel. Top. Quantum Electron. 4, 815–820 (1998).
    [CrossRef]
  5. T. D. Milster, “Near-field optics: a new tool for data storage,” Proc. IEEE 88, 1480–1490 (2000).
    [CrossRef]
  6. U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
    [CrossRef]
  7. M. Eberler, R. Dorn, B. Münzer, S. Quabis, G. Leuchs, “Characterization of sub-wavelength structures using phase-singularities,” in Proceedings of the World Conference on Systematics, Cybernetics and Informatics (International Institute of Information and Systemics, Orlando, Fla., 2001).
  8. J. Leuthold, R. Hess, J. Eckner, P. A. Besse, H. Melchior, “Spatial mode filters realized with multimode interference couplers,” Opt. Lett. 21, 836–838 (1996).
    [CrossRef] [PubMed]
  9. F. Fransoo, D. Van Thourhout, L. Van Landschoot, A. Verbiest, W. Van Parys, P. Van Daele, R. Baets, “A method for detecting sub-wavelength features by means of a multimode waveguide and a mode splitting photonic IC,” in Proceedings of the LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 750–751.
  10. B. E. S. Saleh, M. C. Teich, “Single-lens imaging system,” in Fundamentals of Photonics (Wiley, New York, 1991), pp. 139–143.
  11. A. Korpel, “Simplified diffraction theory of the video disk,” Appl. Opt. 17, 2037–2042 (1978).
    [CrossRef] [PubMed]
  12. P. Bienstman, R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523–540 (2002).
    [CrossRef]
  13. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427–471 (1996).
    [CrossRef]
  14. M. Gu, D. Day, O. Nakamura, S. Kawata, “Three-dimensional coherent transfer function for reflection confocal microscopy in the presence of refractive-index mismatch,” J. Opt. Soc. Am. A 18, 2002–2008 (2001).
    [CrossRef]
  15. T. Zhou, C. Tan, C. Leis, I. Harvey, G. Lewis, T. Wong, M. O’Neill, “Multilevel amplitude-modulation system for optical data storage,” in Advanced Optical Storage Technology, D. Xu, S. Ogawa, eds., Proc. SPIE4930, 7–20 (2002).
    [CrossRef]
  16. S. Stallinga, “Confocal detection and pupil masks for data storage on optical discs,” in Proceedings of EOS Topical Meeting on Advanced Imaging Techniques (European Optical Society, Hannover, Germany, 2003), pp. 49–51.

2002 (1)

P. Bienstman, R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523–540 (2002).
[CrossRef]

2001 (1)

2000 (1)

T. D. Milster, “Near-field optics: a new tool for data storage,” Proc. IEEE 88, 1480–1490 (2000).
[CrossRef]

1999 (1)

U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
[CrossRef]

1998 (1)

H. Awano, N. Ohta, “Magnetooptical recording technology toward 100 Gb/in2,” IEEE J. Sel. Top. Quantum Electron. 4, 815–820 (1998).
[CrossRef]

1997 (2)

M. Mansuripur, G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
[CrossRef]

A. J. den Dekker, A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14, 547–557 (1997).
[CrossRef]

1996 (2)

1978 (1)

Awano, H.

H. Awano, N. Ohta, “Magnetooptical recording technology toward 100 Gb/in2,” IEEE J. Sel. Top. Quantum Electron. 4, 815–820 (1998).
[CrossRef]

Baets, R.

P. Bienstman, R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523–540 (2002).
[CrossRef]

F. Fransoo, D. Van Thourhout, L. Van Landschoot, A. Verbiest, W. Van Parys, P. Van Daele, R. Baets, “A method for detecting sub-wavelength features by means of a multimode waveguide and a mode splitting photonic IC,” in Proceedings of the LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 750–751.

Besse, P. A.

Bienstman, P.

P. Bienstman, R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523–540 (2002).
[CrossRef]

Bouwhuis, G.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Schouhamer Immink, Principles of Optical Disc Systems (Hilger, Bristol, UK, 1985).

Braat, J.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Schouhamer Immink, Principles of Optical Disc Systems (Hilger, Bristol, UK, 1985).

Brand, U.

U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
[CrossRef]

Day, D.

den Dekker, A. J.

Dorn, R.

M. Eberler, R. Dorn, B. Münzer, S. Quabis, G. Leuchs, “Characterization of sub-wavelength structures using phase-singularities,” in Proceedings of the World Conference on Systematics, Cybernetics and Informatics (International Institute of Information and Systemics, Orlando, Fla., 2001).

Eberler, M.

M. Eberler, R. Dorn, B. Münzer, S. Quabis, G. Leuchs, “Characterization of sub-wavelength structures using phase-singularities,” in Proceedings of the World Conference on Systematics, Cybernetics and Informatics (International Institute of Information and Systemics, Orlando, Fla., 2001).

Eckner, J.

Fransoo, F.

F. Fransoo, D. Van Thourhout, L. Van Landschoot, A. Verbiest, W. Van Parys, P. Van Daele, R. Baets, “A method for detecting sub-wavelength features by means of a multimode waveguide and a mode splitting photonic IC,” in Proceedings of the LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 750–751.

Grochmalicki, J.

U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
[CrossRef]

Gu, M.

Harvey, I.

T. Zhou, C. Tan, C. Leis, I. Harvey, G. Lewis, T. Wong, M. O’Neill, “Multilevel amplitude-modulation system for optical data storage,” in Advanced Optical Storage Technology, D. Xu, S. Ogawa, eds., Proc. SPIE4930, 7–20 (2002).
[CrossRef]

Hess, R.

Hester, G.

U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
[CrossRef]

Huijser, A.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Schouhamer Immink, Principles of Optical Disc Systems (Hilger, Bristol, UK, 1985).

Kawata, S.

Korpel, A.

Leis, C.

T. Zhou, C. Tan, C. Leis, I. Harvey, G. Lewis, T. Wong, M. O’Neill, “Multilevel amplitude-modulation system for optical data storage,” in Advanced Optical Storage Technology, D. Xu, S. Ogawa, eds., Proc. SPIE4930, 7–20 (2002).
[CrossRef]

Leuchs, G.

M. Eberler, R. Dorn, B. Münzer, S. Quabis, G. Leuchs, “Characterization of sub-wavelength structures using phase-singularities,” in Proceedings of the World Conference on Systematics, Cybernetics and Informatics (International Institute of Information and Systemics, Orlando, Fla., 2001).

Leuthold, J.

Lewis, G.

T. Zhou, C. Tan, C. Leis, I. Harvey, G. Lewis, T. Wong, M. O’Neill, “Multilevel amplitude-modulation system for optical data storage,” in Advanced Optical Storage Technology, D. Xu, S. Ogawa, eds., Proc. SPIE4930, 7–20 (2002).
[CrossRef]

Mansuripur, M.

M. Mansuripur, G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
[CrossRef]

Melchior, H.

Milster, T. D.

T. D. Milster, “Near-field optics: a new tool for data storage,” Proc. IEEE 88, 1480–1490 (2000).
[CrossRef]

Münzer, B.

M. Eberler, R. Dorn, B. Münzer, S. Quabis, G. Leuchs, “Characterization of sub-wavelength structures using phase-singularities,” in Proceedings of the World Conference on Systematics, Cybernetics and Informatics (International Institute of Information and Systemics, Orlando, Fla., 2001).

Nakamura, O.

O’Neill, M.

T. Zhou, C. Tan, C. Leis, I. Harvey, G. Lewis, T. Wong, M. O’Neill, “Multilevel amplitude-modulation system for optical data storage,” in Advanced Optical Storage Technology, D. Xu, S. Ogawa, eds., Proc. SPIE4930, 7–20 (2002).
[CrossRef]

Ohta, N.

H. Awano, N. Ohta, “Magnetooptical recording technology toward 100 Gb/in2,” IEEE J. Sel. Top. Quantum Electron. 4, 815–820 (1998).
[CrossRef]

Pasman, J.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Schouhamer Immink, Principles of Optical Disc Systems (Hilger, Bristol, UK, 1985).

Pike, R.

U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
[CrossRef]

Quabis, S.

M. Eberler, R. Dorn, B. Münzer, S. Quabis, G. Leuchs, “Characterization of sub-wavelength structures using phase-singularities,” in Proceedings of the World Conference on Systematics, Cybernetics and Informatics (International Institute of Information and Systemics, Orlando, Fla., 2001).

Saleh, B. E. S.

B. E. S. Saleh, M. C. Teich, “Single-lens imaging system,” in Fundamentals of Photonics (Wiley, New York, 1991), pp. 139–143.

Schouhamer Immink, K.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Schouhamer Immink, Principles of Optical Disc Systems (Hilger, Bristol, UK, 1985).

Sincerbox, G.

M. Mansuripur, G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
[CrossRef]

Stallinga, S.

S. Stallinga, “Confocal detection and pupil masks for data storage on optical discs,” in Proceedings of EOS Topical Meeting on Advanced Imaging Techniques (European Optical Society, Hannover, Germany, 2003), pp. 49–51.

Tan, C.

T. Zhou, C. Tan, C. Leis, I. Harvey, G. Lewis, T. Wong, M. O’Neill, “Multilevel amplitude-modulation system for optical data storage,” in Advanced Optical Storage Technology, D. Xu, S. Ogawa, eds., Proc. SPIE4930, 7–20 (2002).
[CrossRef]

Teich, M. C.

B. E. S. Saleh, M. C. Teich, “Single-lens imaging system,” in Fundamentals of Photonics (Wiley, New York, 1991), pp. 139–143.

Van Daele, P.

F. Fransoo, D. Van Thourhout, L. Van Landschoot, A. Verbiest, W. Van Parys, P. Van Daele, R. Baets, “A method for detecting sub-wavelength features by means of a multimode waveguide and a mode splitting photonic IC,” in Proceedings of the LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 750–751.

van den Bos, A.

Van Landschoot, L.

F. Fransoo, D. Van Thourhout, L. Van Landschoot, A. Verbiest, W. Van Parys, P. Van Daele, R. Baets, “A method for detecting sub-wavelength features by means of a multimode waveguide and a mode splitting photonic IC,” in Proceedings of the LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 750–751.

Van Parys, W.

F. Fransoo, D. Van Thourhout, L. Van Landschoot, A. Verbiest, W. Van Parys, P. Van Daele, R. Baets, “A method for detecting sub-wavelength features by means of a multimode waveguide and a mode splitting photonic IC,” in Proceedings of the LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 750–751.

van Rosmalen, G.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Schouhamer Immink, Principles of Optical Disc Systems (Hilger, Bristol, UK, 1985).

Van Thourhout, D.

F. Fransoo, D. Van Thourhout, L. Van Landschoot, A. Verbiest, W. Van Parys, P. Van Daele, R. Baets, “A method for detecting sub-wavelength features by means of a multimode waveguide and a mode splitting photonic IC,” in Proceedings of the LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 750–751.

Verbiest, A.

F. Fransoo, D. Van Thourhout, L. Van Landschoot, A. Verbiest, W. Van Parys, P. Van Daele, R. Baets, “A method for detecting sub-wavelength features by means of a multimode waveguide and a mode splitting photonic IC,” in Proceedings of the LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 750–751.

Webb, R. H.

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427–471 (1996).
[CrossRef]

Wong, T.

T. Zhou, C. Tan, C. Leis, I. Harvey, G. Lewis, T. Wong, M. O’Neill, “Multilevel amplitude-modulation system for optical data storage,” in Advanced Optical Storage Technology, D. Xu, S. Ogawa, eds., Proc. SPIE4930, 7–20 (2002).
[CrossRef]

Zhou, T.

T. Zhou, C. Tan, C. Leis, I. Harvey, G. Lewis, T. Wong, M. O’Neill, “Multilevel amplitude-modulation system for optical data storage,” in Advanced Optical Storage Technology, D. Xu, S. Ogawa, eds., Proc. SPIE4930, 7–20 (2002).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

H. Awano, N. Ohta, “Magnetooptical recording technology toward 100 Gb/in2,” IEEE J. Sel. Top. Quantum Electron. 4, 815–820 (1998).
[CrossRef]

J. Opt. A (1)

U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

P. Bienstman, R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523–540 (2002).
[CrossRef]

Proc. IEEE (2)

T. D. Milster, “Near-field optics: a new tool for data storage,” Proc. IEEE 88, 1480–1490 (2000).
[CrossRef]

M. Mansuripur, G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
[CrossRef]

Rep. Prog. Phys. (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427–471 (1996).
[CrossRef]

Other (6)

T. Zhou, C. Tan, C. Leis, I. Harvey, G. Lewis, T. Wong, M. O’Neill, “Multilevel amplitude-modulation system for optical data storage,” in Advanced Optical Storage Technology, D. Xu, S. Ogawa, eds., Proc. SPIE4930, 7–20 (2002).
[CrossRef]

S. Stallinga, “Confocal detection and pupil masks for data storage on optical discs,” in Proceedings of EOS Topical Meeting on Advanced Imaging Techniques (European Optical Society, Hannover, Germany, 2003), pp. 49–51.

M. Eberler, R. Dorn, B. Münzer, S. Quabis, G. Leuchs, “Characterization of sub-wavelength structures using phase-singularities,” in Proceedings of the World Conference on Systematics, Cybernetics and Informatics (International Institute of Information and Systemics, Orlando, Fla., 2001).

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Schouhamer Immink, Principles of Optical Disc Systems (Hilger, Bristol, UK, 1985).

F. Fransoo, D. Van Thourhout, L. Van Landschoot, A. Verbiest, W. Van Parys, P. Van Daele, R. Baets, “A method for detecting sub-wavelength features by means of a multimode waveguide and a mode splitting photonic IC,” in Proceedings of the LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 750–751.

B. E. S. Saleh, M. C. Teich, “Single-lens imaging system,” in Fundamentals of Photonics (Wiley, New York, 1991), pp. 139–143.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic view of the PIC, waveguide, and disk. The different subparts are not drawn to scale.

Fig. 2
Fig. 2

Schematic view of the light path from the waveguide to the disk and back to the waveguide. The illumination and detection sides are unfolded.

Fig. 3
Fig. 3

Normalized modes of a waveguide (width is 0.5λ, n core = 3.5, n clad = 3.0). The dotted curve shows the zeroth-order mode, the dashed curve shows the first-order mode, and the solid curve shows the spatial derivative of the zeroth-order mode.

Fig. 4
Fig. 4

Left column shows the MTF for the P 0 and P 1 response in solid and dashed curves, respectively. The dotted curves give the shape of the MTF of a confocal microscope. On the right side, the respective effective detection apertures m air 0(Mx) and m air 1(Mx) are shown by the solid and dashed curves, respectively. A, width is 1.5, M = 1; B, width is 0.5, M = 1; C, width is 1.5, M = 3.

Fig. 5
Fig. 5

MTF of the waveguide scanning system with the waveguide sliding over the disk at a flying height of λ/4 and λ, respectively.

Fig. 6
Fig. 6

Distorted signal at detectors 2 × 2 n calculated responses. Left column shows the original bit pattern and the distorted signals P 0 and P 1. The right side shows the candidate bit patterns and the calculated superimposed responses C 0 k and C 1 k .

Fig. 7
Fig. 7

Graph of the couples (S 0 k , S 1 k ) for k = 1 … 2 n . S 0 k is along the horizontal axis, and S 1 k is along the vertical axis.

Fig. 8
Fig. 8

BER in the case of white noise (upper graph) and intertrack cross talk (lower graph). The dashed curves show BER0, the dotted curves show BER1, and the solid curves show the BER of the optimum combination. In each graph the upper three curves describe a higher noise level than in the lower three curves.

Fig. 9
Fig. 9

BER in the case of white noise (upper graph) and intertrack cross talk (lower graph) plotted as a function of the linear combination. The different curves represent simulations with decreasing noise levels. The curves start at the left with the value of BER1, go through an optimum, and end at the right with the value of BER0. The simulated bit patterns have minimum bit sizes of 0.25λ/NA.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ψ1x1, y1, z=0-=i=1N αimwgix1, y1.
ψ2aix2, y2=y1x1 mairix1, y1psfoptx2-x1/M, y2-y1/Mdx1dy1.
ψ2bix2, xs, y2=ψ2aix2, y2bpx2-xs, y2.
ψ3ix3, xs, y3=y2x2 ψ2bx2, xs, y2psfoptx3-Mx2, y3-My2dx2dy2.
psfoptx, y=psfoptx/M, y/M.
χi,jxs=y3x3 ψ3ix3, xs, y3mairjx3, y3dx3dy3.
χi,jxs=   mairix1, y1psflensx2-x1/M, y2-y1/Mdx1dy1bpx2-xs, y2psflensx3-Mx2, y3-My2dx2dy2mairjx3, y3dx3dy3.
χi,jxs= bpx2-xs, y2× mairiMx1, My1psfoptx2-x1, y2-y1dx1dy1 mairjMx3, My3psfopt×x2-x3, y2-y3dx3dy3dx2dy2.
psfdetectjx, y=psfoptx, ymairjMx, My,psfillumix, y=psfoptx, ymairiMx, My,psftoti,jx, y=psfillumix, ypsfdetectjx, y,
χi,jxs=yxbpx-xs, ypsftoti,jx, ydxdy=bppsftoti,j.
Pjxs=γi=1N αiχi,j2=γbpi=1N αipsftoti,j2=γ|bppsftotj|2,
χ0,1xsη2ddxs χ0,0xs.
P0xs=γ|Axs|2,P1xsγη24dAxsdxs+Axsdϕxsdxs2.
βf=2π1λ2-f21/2for |f|1λ,βf=-j2πf2-1λ21/2for |f|1λ.
Sjk= |Pjs-Cjks|2ds k=12n,j=0N-1.
Sjkj=mink=12n Sjk.
STk=j=1N βjSjk,

Metrics