Abstract

A compact, low-component-count, no-moving-parts variable optical attenuator (VOA) is demonstrated for the first time by means of beam spoiling that is implemented via an electrically reconfigurable nonpixelated nematic liquid-crystal deflector. The VOA design features an in-line alignment polarization-insensitive design that does not use bulky polarization splitting and combining optics. The proof-of-concept VOA at 1550 nm demonstrates a 30-dB attenuation range, a 2.5-dB insertion loss, a ≤0.8-dB polarization-dependent loss, and a 1-s maximum attenuation reset time. The VOA design can counter performance-reducing environmental effects such as excess-loss increases due to temperature variations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
    [CrossRef]
  2. M. J. Mughal, N. A. Riza, “Compact acousto-optic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
    [CrossRef]
  3. X. Orignac, “First ion-exchanged dual thermo-optic variable optical attenuator,” in International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 89–92.
    [CrossRef]
  4. J. L. Jackel, J. J. Veselka, S. P. Lyman, “Thermally tuned glass Mach-Zehnder interferometer used as a polarization insensitive attenuator,” Appl. Opt. 24, 612–614 (1985).
    [CrossRef] [PubMed]
  5. R. A. Soref, “Liquid-crystal fiber-optic switch,” Opt. Lett. 4, 155–157 (1979).
    [CrossRef] [PubMed]
  6. E. G. Hanson, “Polarization-independent liquid-crystal optical attenuator for fiber-optics applications,” Appl. Opt. 21, 1342–1344 (1982).
    [CrossRef] [PubMed]
  7. K. Hirabayashi, M. Wada, C. Amano, “Compact optical-fiber variable attenuator arrays with polymer-network liquid crystals,” Appl. Opt. 40, 3509–3517 (2001).
    [CrossRef]
  8. J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (NFOEC) (Telcordia, Orlando, Fla., 2003), pp. 943–949.
  9. N. A. Riza, “Fault-tolerant fiber-optical beam control modules,” U.S. patent6,222,954 (24April2001).
  10. N. A. Riza, Y. Huang, “Digital fault-tolerant variable fiber optic attenuator using liquid crystals,” in Advances in Optical Information Processing IX, D. R. Pape, ed., Proc. SPIE4046, 101–106 (2000).
    [CrossRef]
  11. N. A. Riza, “Multi-technology multi-beam-former platform for robust fiber-optical beam control modules,” U.S. patent6,525,863 (25February2003).
  12. M. van Buren, N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt. 42, 550–565 (2003).
    [CrossRef] [PubMed]
  13. G. D. Love, J. V. Major, A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
    [CrossRef] [PubMed]
  14. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
    [CrossRef]
  15. L. M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals (Wiley, New York, 1983).
  16. S. Yuan, N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38, 3214–3222 (1999).
    [CrossRef]
  17. S. T. Wu, School of Optics and the Center for Research and Education in Optics and Lasers, University of Central Florida, 4000 Central Florida Blvd., Orlando, Fla. 32816-2700 (personal communication, 2003).
  18. I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
    [CrossRef]
  19. Merck Liquid Crystals Catalog (Merck, Darmstadt, Germany, 2003).

2003 (1)

2002 (1)

M. J. Mughal, N. A. Riza, “Compact acousto-optic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
[CrossRef]

2001 (1)

1999 (2)

C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
[CrossRef]

S. Yuan, N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38, 3214–3222 (1999).
[CrossRef]

1998 (1)

1994 (1)

1985 (1)

1982 (1)

1979 (1)

Amano, C.

Blinov, L. M.

L. M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals (Wiley, New York, 1983).

de Rooij, N. F.

C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
[CrossRef]

Griss, P.

C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
[CrossRef]

Guralnik, I. R.

Hanson, E. G.

Hirabayashi, K.

Huang, Y.

N. A. Riza, Y. Huang, “Digital fault-tolerant variable fiber optic attenuator using liquid crystals,” in Advances in Optical Information Processing IX, D. R. Pape, ed., Proc. SPIE4046, 101–106 (2000).
[CrossRef]

Jackel, J. L.

Jiang, J.

J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (NFOEC) (Telcordia, Orlando, Fla., 2003), pp. 943–949.

Khoo, I. C.

I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[CrossRef]

Loktev, M. Yu.

Love, G. D.

Lyman, S. P.

Major, J. V.

Marxer, C.

C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
[CrossRef]

Mughal, M. J.

M. J. Mughal, N. A. Riza, “Compact acousto-optic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
[CrossRef]

Naumov, A. F.

Orignac, X.

X. Orignac, “First ion-exchanged dual thermo-optic variable optical attenuator,” in International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 89–92.
[CrossRef]

Pan, J. J.

J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (NFOEC) (Telcordia, Orlando, Fla., 2003), pp. 943–949.

Purvis, A.

Qiu, X.

J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (NFOEC) (Telcordia, Orlando, Fla., 2003), pp. 943–949.

Riza, N. A.

M. van Buren, N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt. 42, 550–565 (2003).
[CrossRef] [PubMed]

M. J. Mughal, N. A. Riza, “Compact acousto-optic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
[CrossRef]

S. Yuan, N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38, 3214–3222 (1999).
[CrossRef]

N. A. Riza, “Multi-technology multi-beam-former platform for robust fiber-optical beam control modules,” U.S. patent6,525,863 (25February2003).

N. A. Riza, “Fault-tolerant fiber-optical beam control modules,” U.S. patent6,222,954 (24April2001).

N. A. Riza, Y. Huang, “Digital fault-tolerant variable fiber optic attenuator using liquid crystals,” in Advances in Optical Information Processing IX, D. R. Pape, ed., Proc. SPIE4046, 101–106 (2000).
[CrossRef]

Soref, R. A.

van Buren, M.

Vdovin, G.

Veselka, J. J.

Wada, M.

Wang, W.

J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (NFOEC) (Telcordia, Orlando, Fla., 2003), pp. 943–949.

Wu, H.

J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (NFOEC) (Telcordia, Orlando, Fla., 2003), pp. 943–949.

Wu, S. T.

S. T. Wu, School of Optics and the Center for Research and Education in Optics and Lasers, University of Central Florida, 4000 Central Florida Blvd., Orlando, Fla. 32816-2700 (personal communication, 2003).

I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[CrossRef]

Yuan, S.

Appl. Opt. (5)

IEEE Photon. Technol. Lett. (2)

C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
[CrossRef]

M. J. Mughal, N. A. Riza, “Compact acousto-optic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
[CrossRef]

Opt. Lett. (3)

Other (9)

L. M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals (Wiley, New York, 1983).

S. T. Wu, School of Optics and the Center for Research and Education in Optics and Lasers, University of Central Florida, 4000 Central Florida Blvd., Orlando, Fla. 32816-2700 (personal communication, 2003).

I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[CrossRef]

Merck Liquid Crystals Catalog (Merck, Darmstadt, Germany, 2003).

X. Orignac, “First ion-exchanged dual thermo-optic variable optical attenuator,” in International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 89–92.
[CrossRef]

J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (NFOEC) (Telcordia, Orlando, Fla., 2003), pp. 943–949.

N. A. Riza, “Fault-tolerant fiber-optical beam control modules,” U.S. patent6,222,954 (24April2001).

N. A. Riza, Y. Huang, “Digital fault-tolerant variable fiber optic attenuator using liquid crystals,” in Advances in Optical Information Processing IX, D. R. Pape, ed., Proc. SPIE4046, 101–106 (2000).
[CrossRef]

N. A. Riza, “Multi-technology multi-beam-former platform for robust fiber-optical beam control modules,” U.S. patent6,525,863 (25February2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top views of the proposed NLC beam-spoiling VOA designs with (a) two fiber collimators and two NLC deflectors with orthogonal NLC directors, (b) a dual-fiber collimator and a single NLC deflector with a 45° Faraday rotator-mirror pair, and (c) an optical circulator, a single-fiber collimator with a single NLC deflector and a 45° Faraday rotator-mirror pair. λ/4, quarter-wave plate.

Fig. 2
Fig. 2

Top views of the NLC deflector used to realize the VOAs. NLC molecule orientations are shown for (a) when a zero control signal is applied and (b) when a control signal is present that reorients the NLC molecules to induce a spatial wedgelike refractive-index change. p, horizontally polarized light component.

Fig. 3
Fig. 3

Measured optical attenuation as a function of (a) drive frequency and (b) voltage. p, horizontally polarized light component parallel to cell nematic director; s, vertically polarized light component normal to the device NLC director.

Fig. 4
Fig. 4

Proposed NLC deflector-based 1 × 2 switch designs with (a) a single-fiber collimator, two parallel-aligned NLC deflectors, a half-wave plate (τ/2), and a dual-fiber collimator; and (b) a triple-fiber collimator and a single NLC deflector in a reflective mode.

Tables (1)

Tables Icon

Table 1 VOA Design Parameters Versus the Obtained Beam-Spoiling Parametersa

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

ϕV, f, x=2π/λnV, f, xt,
ϕV, f, x=0=ϕ0=2π/λnV, f, 0t,
ϕV, f, x=D=ϕD=2π/λnV, f, Dt.
Δϕ=ϕD-ϕ0,
Δϕ=2π/λne-nV, f, 0t.
2πD/λsin θw=Δϕ,
2πD/λsin θw=2π/λne-nV, ft.
θwV, f=sin-1t/Dne-nV, f,
nsin θw=sin θe.
n2=ne2+2no2/3.
θe=sin-1nsin θw.
x0=d tan θe.
x0=d tansin-1n sin θw.
x0=d tansin-1nt/Dne-nV, f.
x0dnt/Dne-nV, f=dnθw.
τr=τ0VVth2-1,
τ0=γ1t2π2K11,
Vth=πK11ε0Δε1/2,
ts=τr+τ0.

Metrics