Abstract

The high sensitivity of surface-plasmon resonance (SPR) sensors allows measurements of small variations in surface potentials to be made. We studied the changes of the SPR angle when an oscillating electric potential was applied to a gold film on which surface plasmons were excited. The shifts of the SPR resonance angle were observed for various aqueous solutions as an adjacent medium. A model that takes into account the redistribution of charges at the double layer near the metal-liquid interface as well as the oxidation of the gold film was developed. It was found that a change in the electronic density at voltages below the oxidation potential and, in addition, the oxidation of the gold surface above this potential are the main mechanisms that account for the observed dependences. It was shown that relatively slow oxidation-reduction processes can explain the observed hysteresis effect. Application of these techniques to studies of dielectric properties and conformational changes of polar biomolecules, such as tubulin, are discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  2. E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
    [CrossRef]
  3. J. R. Sambles, G. W. Bradbary, Fuzi Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173–183 (1991).
    [CrossRef]
  4. U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).
  5. F. Abeles, T. Lopez-Rios, “Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
    [CrossRef]
  6. R. Kotz, D. M. Kolb, J. K. Saas, “Electron density effects in surface plasmon excitation on silver and gold electrodes,” Surf. Sci. 69, 359–364 (1977).
    [CrossRef]
  7. J. G. Gordon, S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499–509 (1980).
    [CrossRef]
  8. A. Tadjeddine, D. M. Kolb, R. Kotz, “The study of single crystal electrode surfaces by surface plasmon excitation,” Surf. Sci. 101, 277–285 (1980).
    [CrossRef]
  9. A. Tadjeddine, “Influence of the electrical polarization on the surface plasmon dispersion at metal electrolyte interfaces,” Electrochim. Acta 34, 29–33 (1989).
    [CrossRef]
  10. C. W. Tong, A. Kolomenskii, V. Lioubimov, H. A. Schuessler, A. Trache, H. J. Granger, M. Muthuchamy, “Measurements of the cross-bridge attachment detachment process within intact sarcomeres by surface plasmon resonance,” Biochemistry 40, 13915–13924 (2001).
    [CrossRef] [PubMed]
  11. H. A. Schuessler, A. Mershin, A. A. Kolomenskii, D. V. Nanopoulos, “Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers,” J. Mod. Opt. 50, 2381–2391 (2003).
  12. A. A. Kolomenskii, P. D. Gershon, H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser induced surface plasmon resonance,” Appl. Opt. 36, 6539–6547 (1997).
    [CrossRef]
  13. H. Ohshima, K. Furusawa, “Electrical phenomena at interfaces,” Surf. Sci. Ser. 76, 1–17 (1998).
  14. J. McIntyre, “Electrochemical modulation spectroscopy,” Surf. Sci. 37, 658–682 (1973).
    [CrossRef]
  15. L. M. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic, New York, 1980).
  16. G. Belanger, A. K. Vijh, “Anodic oxides on noble metals,” Anodic Beh. Metals Semiconductors Ser. 5, 53–74 (1977).
  17. D. M. Kolb, R. Kotz, “Electroreflectence spectra of Ag(III) electrode,” Surf. Sci. 64, 96–108 (1977).
    [CrossRef]
  18. A. S. Dakkouri, D. M. Kolb, “Reconstruction of gold surfaces,” in Interfacial Electrochemistry (Marcel Dekker, New York, 1999), pp. 151–174.
  19. N. E. Mavromatos, A. Mershin, D. V. Nanopoulos, “QED-cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation,” J. Mod. Phys. B 16, 3623–3642 (2002).
    [CrossRef]
  20. M. V. Sataric, J. A. Tuszynski, R. B. Zakula, “Kink-like excitations as an energy transfer mechanism in microtubules,” Phys. Rev. E 48, 589–587 (1993).
    [CrossRef]
  21. J. Pokorny, F. Jelinek, V. Trkal, “Electric field around microtubules,” Bioelectrochem. Bioenerg. 45, 239–245 (1998).
    [CrossRef]
  22. F. Jelinek, J. Pokorny, J. Saroch, V. Trkal, J. Hasek, B. Palan, “Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results,” Bioelectrochem. Bioenerg. 48, 261–266 (1999).
    [CrossRef] [PubMed]
  23. L. Gu, O. Braha, S. Conlan, S. Cheley, H. Bayley, “Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter,” Nature 389, 686–690 (1999).

2003 (1)

H. A. Schuessler, A. Mershin, A. A. Kolomenskii, D. V. Nanopoulos, “Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers,” J. Mod. Opt. 50, 2381–2391 (2003).

2002 (1)

N. E. Mavromatos, A. Mershin, D. V. Nanopoulos, “QED-cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation,” J. Mod. Phys. B 16, 3623–3642 (2002).
[CrossRef]

2001 (1)

C. W. Tong, A. Kolomenskii, V. Lioubimov, H. A. Schuessler, A. Trache, H. J. Granger, M. Muthuchamy, “Measurements of the cross-bridge attachment detachment process within intact sarcomeres by surface plasmon resonance,” Biochemistry 40, 13915–13924 (2001).
[CrossRef] [PubMed]

1999 (2)

F. Jelinek, J. Pokorny, J. Saroch, V. Trkal, J. Hasek, B. Palan, “Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results,” Bioelectrochem. Bioenerg. 48, 261–266 (1999).
[CrossRef] [PubMed]

L. Gu, O. Braha, S. Conlan, S. Cheley, H. Bayley, “Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter,” Nature 389, 686–690 (1999).

1998 (2)

J. Pokorny, F. Jelinek, V. Trkal, “Electric field around microtubules,” Bioelectrochem. Bioenerg. 45, 239–245 (1998).
[CrossRef]

H. Ohshima, K. Furusawa, “Electrical phenomena at interfaces,” Surf. Sci. Ser. 76, 1–17 (1998).

1997 (1)

1993 (1)

M. V. Sataric, J. A. Tuszynski, R. B. Zakula, “Kink-like excitations as an energy transfer mechanism in microtubules,” Phys. Rev. E 48, 589–587 (1993).
[CrossRef]

1991 (2)

J. R. Sambles, G. W. Bradbary, Fuzi Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173–183 (1991).
[CrossRef]

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

1989 (1)

A. Tadjeddine, “Influence of the electrical polarization on the surface plasmon dispersion at metal electrolyte interfaces,” Electrochim. Acta 34, 29–33 (1989).
[CrossRef]

1980 (2)

J. G. Gordon, S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499–509 (1980).
[CrossRef]

A. Tadjeddine, D. M. Kolb, R. Kotz, “The study of single crystal electrode surfaces by surface plasmon excitation,” Surf. Sci. 101, 277–285 (1980).
[CrossRef]

1977 (3)

R. Kotz, D. M. Kolb, J. K. Saas, “Electron density effects in surface plasmon excitation on silver and gold electrodes,” Surf. Sci. 69, 359–364 (1977).
[CrossRef]

G. Belanger, A. K. Vijh, “Anodic oxides on noble metals,” Anodic Beh. Metals Semiconductors Ser. 5, 53–74 (1977).

D. M. Kolb, R. Kotz, “Electroreflectence spectra of Ag(III) electrode,” Surf. Sci. 64, 96–108 (1977).
[CrossRef]

1975 (1)

F. Abeles, T. Lopez-Rios, “Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
[CrossRef]

1973 (1)

J. McIntyre, “Electrochemical modulation spectroscopy,” Surf. Sci. 37, 658–682 (1973).
[CrossRef]

1971 (1)

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

1968 (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Abeles, F.

F. Abeles, T. Lopez-Rios, “Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
[CrossRef]

Bayley, H.

L. Gu, O. Braha, S. Conlan, S. Cheley, H. Bayley, “Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter,” Nature 389, 686–690 (1999).

Belanger, G.

G. Belanger, A. K. Vijh, “Anodic oxides on noble metals,” Anodic Beh. Metals Semiconductors Ser. 5, 53–74 (1977).

Bradbary, G. W.

J. R. Sambles, G. W. Bradbary, Fuzi Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173–183 (1991).
[CrossRef]

Braha, O.

L. Gu, O. Braha, S. Conlan, S. Cheley, H. Bayley, “Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter,” Nature 389, 686–690 (1999).

Brekhovskikh, L. M.

L. M. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic, New York, 1980).

Cheley, S.

L. Gu, O. Braha, S. Conlan, S. Cheley, H. Bayley, “Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter,” Nature 389, 686–690 (1999).

Conlan, S.

L. Gu, O. Braha, S. Conlan, S. Cheley, H. Bayley, “Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter,” Nature 389, 686–690 (1999).

Dakkouri, A. S.

A. S. Dakkouri, D. M. Kolb, “Reconstruction of gold surfaces,” in Interfacial Electrochemistry (Marcel Dekker, New York, 1999), pp. 151–174.

Ernst, S.

J. G. Gordon, S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499–509 (1980).
[CrossRef]

Fagerstam, L.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Furusawa, K.

H. Ohshima, K. Furusawa, “Electrical phenomena at interfaces,” Surf. Sci. Ser. 76, 1–17 (1998).

Gershon, P. D.

Gordon, J. G.

J. G. Gordon, S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499–509 (1980).
[CrossRef]

Granger, H. J.

C. W. Tong, A. Kolomenskii, V. Lioubimov, H. A. Schuessler, A. Trache, H. J. Granger, M. Muthuchamy, “Measurements of the cross-bridge attachment detachment process within intact sarcomeres by surface plasmon resonance,” Biochemistry 40, 13915–13924 (2001).
[CrossRef] [PubMed]

Gu, L.

L. Gu, O. Braha, S. Conlan, S. Cheley, H. Bayley, “Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter,” Nature 389, 686–690 (1999).

Hasek, J.

F. Jelinek, J. Pokorny, J. Saroch, V. Trkal, J. Hasek, B. Palan, “Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results,” Bioelectrochem. Bioenerg. 48, 261–266 (1999).
[CrossRef] [PubMed]

Ivarsson, B.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Jelinek, F.

F. Jelinek, J. Pokorny, J. Saroch, V. Trkal, J. Hasek, B. Palan, “Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results,” Bioelectrochem. Bioenerg. 48, 261–266 (1999).
[CrossRef] [PubMed]

J. Pokorny, F. Jelinek, V. Trkal, “Electric field around microtubules,” Bioelectrochem. Bioenerg. 45, 239–245 (1998).
[CrossRef]

Johnsson, B.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Jonsson, U.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Karlsson, R.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Kolb, D. M.

A. Tadjeddine, D. M. Kolb, R. Kotz, “The study of single crystal electrode surfaces by surface plasmon excitation,” Surf. Sci. 101, 277–285 (1980).
[CrossRef]

R. Kotz, D. M. Kolb, J. K. Saas, “Electron density effects in surface plasmon excitation on silver and gold electrodes,” Surf. Sci. 69, 359–364 (1977).
[CrossRef]

D. M. Kolb, R. Kotz, “Electroreflectence spectra of Ag(III) electrode,” Surf. Sci. 64, 96–108 (1977).
[CrossRef]

A. S. Dakkouri, D. M. Kolb, “Reconstruction of gold surfaces,” in Interfacial Electrochemistry (Marcel Dekker, New York, 1999), pp. 151–174.

Kolomenskii, A.

C. W. Tong, A. Kolomenskii, V. Lioubimov, H. A. Schuessler, A. Trache, H. J. Granger, M. Muthuchamy, “Measurements of the cross-bridge attachment detachment process within intact sarcomeres by surface plasmon resonance,” Biochemistry 40, 13915–13924 (2001).
[CrossRef] [PubMed]

Kolomenskii, A. A.

H. A. Schuessler, A. Mershin, A. A. Kolomenskii, D. V. Nanopoulos, “Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers,” J. Mod. Opt. 50, 2381–2391 (2003).

A. A. Kolomenskii, P. D. Gershon, H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser induced surface plasmon resonance,” Appl. Opt. 36, 6539–6547 (1997).
[CrossRef]

Kotz, R.

A. Tadjeddine, D. M. Kolb, R. Kotz, “The study of single crystal electrode surfaces by surface plasmon excitation,” Surf. Sci. 101, 277–285 (1980).
[CrossRef]

R. Kotz, D. M. Kolb, J. K. Saas, “Electron density effects in surface plasmon excitation on silver and gold electrodes,” Surf. Sci. 69, 359–364 (1977).
[CrossRef]

D. M. Kolb, R. Kotz, “Electroreflectence spectra of Ag(III) electrode,” Surf. Sci. 64, 96–108 (1977).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Lioubimov, V.

C. W. Tong, A. Kolomenskii, V. Lioubimov, H. A. Schuessler, A. Trache, H. J. Granger, M. Muthuchamy, “Measurements of the cross-bridge attachment detachment process within intact sarcomeres by surface plasmon resonance,” Biochemistry 40, 13915–13924 (2001).
[CrossRef] [PubMed]

Lopez-Rios, T.

F. Abeles, T. Lopez-Rios, “Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
[CrossRef]

Malmqvist, M.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Mavromatos, N. E.

N. E. Mavromatos, A. Mershin, D. V. Nanopoulos, “QED-cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation,” J. Mod. Phys. B 16, 3623–3642 (2002).
[CrossRef]

McIntyre, J.

J. McIntyre, “Electrochemical modulation spectroscopy,” Surf. Sci. 37, 658–682 (1973).
[CrossRef]

Mershin, A.

H. A. Schuessler, A. Mershin, A. A. Kolomenskii, D. V. Nanopoulos, “Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers,” J. Mod. Opt. 50, 2381–2391 (2003).

N. E. Mavromatos, A. Mershin, D. V. Nanopoulos, “QED-cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation,” J. Mod. Phys. B 16, 3623–3642 (2002).
[CrossRef]

Muthuchamy, M.

C. W. Tong, A. Kolomenskii, V. Lioubimov, H. A. Schuessler, A. Trache, H. J. Granger, M. Muthuchamy, “Measurements of the cross-bridge attachment detachment process within intact sarcomeres by surface plasmon resonance,” Biochemistry 40, 13915–13924 (2001).
[CrossRef] [PubMed]

Nanopoulos, D. V.

H. A. Schuessler, A. Mershin, A. A. Kolomenskii, D. V. Nanopoulos, “Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers,” J. Mod. Opt. 50, 2381–2391 (2003).

N. E. Mavromatos, A. Mershin, D. V. Nanopoulos, “QED-cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation,” J. Mod. Phys. B 16, 3623–3642 (2002).
[CrossRef]

Ohshima, H.

H. Ohshima, K. Furusawa, “Electrical phenomena at interfaces,” Surf. Sci. Ser. 76, 1–17 (1998).

Ostlin, H.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Palan, B.

F. Jelinek, J. Pokorny, J. Saroch, V. Trkal, J. Hasek, B. Palan, “Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results,” Bioelectrochem. Bioenerg. 48, 261–266 (1999).
[CrossRef] [PubMed]

Persson, D.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Pokorny, J.

F. Jelinek, J. Pokorny, J. Saroch, V. Trkal, J. Hasek, B. Palan, “Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results,” Bioelectrochem. Bioenerg. 48, 261–266 (1999).
[CrossRef] [PubMed]

J. Pokorny, F. Jelinek, V. Trkal, “Electric field around microtubules,” Bioelectrochem. Bioenerg. 45, 239–245 (1998).
[CrossRef]

Ronnberg, I.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Ross, H.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Saas, J. K.

R. Kotz, D. M. Kolb, J. K. Saas, “Electron density effects in surface plasmon excitation on silver and gold electrodes,” Surf. Sci. 69, 359–364 (1977).
[CrossRef]

Sambles, J. R.

J. R. Sambles, G. W. Bradbary, Fuzi Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173–183 (1991).
[CrossRef]

Saroch, J.

F. Jelinek, J. Pokorny, J. Saroch, V. Trkal, J. Hasek, B. Palan, “Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results,” Bioelectrochem. Bioenerg. 48, 261–266 (1999).
[CrossRef] [PubMed]

Sataric, M. V.

M. V. Sataric, J. A. Tuszynski, R. B. Zakula, “Kink-like excitations as an energy transfer mechanism in microtubules,” Phys. Rev. E 48, 589–587 (1993).
[CrossRef]

Schuessler, H. A.

H. A. Schuessler, A. Mershin, A. A. Kolomenskii, D. V. Nanopoulos, “Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers,” J. Mod. Opt. 50, 2381–2391 (2003).

C. W. Tong, A. Kolomenskii, V. Lioubimov, H. A. Schuessler, A. Trache, H. J. Granger, M. Muthuchamy, “Measurements of the cross-bridge attachment detachment process within intact sarcomeres by surface plasmon resonance,” Biochemistry 40, 13915–13924 (2001).
[CrossRef] [PubMed]

A. A. Kolomenskii, P. D. Gershon, H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser induced surface plasmon resonance,” Appl. Opt. 36, 6539–6547 (1997).
[CrossRef]

Sjolander, S.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Stahlberg, R.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Stenberg, E.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Tadjeddine, A.

A. Tadjeddine, “Influence of the electrical polarization on the surface plasmon dispersion at metal electrolyte interfaces,” Electrochim. Acta 34, 29–33 (1989).
[CrossRef]

A. Tadjeddine, D. M. Kolb, R. Kotz, “The study of single crystal electrode surfaces by surface plasmon excitation,” Surf. Sci. 101, 277–285 (1980).
[CrossRef]

Tong, C. W.

C. W. Tong, A. Kolomenskii, V. Lioubimov, H. A. Schuessler, A. Trache, H. J. Granger, M. Muthuchamy, “Measurements of the cross-bridge attachment detachment process within intact sarcomeres by surface plasmon resonance,” Biochemistry 40, 13915–13924 (2001).
[CrossRef] [PubMed]

Trache, A.

C. W. Tong, A. Kolomenskii, V. Lioubimov, H. A. Schuessler, A. Trache, H. J. Granger, M. Muthuchamy, “Measurements of the cross-bridge attachment detachment process within intact sarcomeres by surface plasmon resonance,” Biochemistry 40, 13915–13924 (2001).
[CrossRef] [PubMed]

Trkal, V.

F. Jelinek, J. Pokorny, J. Saroch, V. Trkal, J. Hasek, B. Palan, “Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results,” Bioelectrochem. Bioenerg. 48, 261–266 (1999).
[CrossRef] [PubMed]

J. Pokorny, F. Jelinek, V. Trkal, “Electric field around microtubules,” Bioelectrochem. Bioenerg. 45, 239–245 (1998).
[CrossRef]

Tuszynski, J. A.

M. V. Sataric, J. A. Tuszynski, R. B. Zakula, “Kink-like excitations as an energy transfer mechanism in microtubules,” Phys. Rev. E 48, 589–587 (1993).
[CrossRef]

Urbaniczky, C.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Vijh, A. K.

G. Belanger, A. K. Vijh, “Anodic oxides on noble metals,” Anodic Beh. Metals Semiconductors Ser. 5, 53–74 (1977).

Yang, Fuzi

J. R. Sambles, G. W. Bradbary, Fuzi Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173–183 (1991).
[CrossRef]

Zakula, R. B.

M. V. Sataric, J. A. Tuszynski, R. B. Zakula, “Kink-like excitations as an energy transfer mechanism in microtubules,” Phys. Rev. E 48, 589–587 (1993).
[CrossRef]

Anodic Beh. Metals Semiconductors Ser. (1)

G. Belanger, A. K. Vijh, “Anodic oxides on noble metals,” Anodic Beh. Metals Semiconductors Ser. 5, 53–74 (1977).

Appl. Opt. (1)

Biochemistry (1)

C. W. Tong, A. Kolomenskii, V. Lioubimov, H. A. Schuessler, A. Trache, H. J. Granger, M. Muthuchamy, “Measurements of the cross-bridge attachment detachment process within intact sarcomeres by surface plasmon resonance,” Biochemistry 40, 13915–13924 (2001).
[CrossRef] [PubMed]

Bioelectrochem. Bioenerg. (2)

J. Pokorny, F. Jelinek, V. Trkal, “Electric field around microtubules,” Bioelectrochem. Bioenerg. 45, 239–245 (1998).
[CrossRef]

F. Jelinek, J. Pokorny, J. Saroch, V. Trkal, J. Hasek, B. Palan, “Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results,” Bioelectrochem. Bioenerg. 48, 261–266 (1999).
[CrossRef] [PubMed]

BioTechniques (1)

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Ross, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology,” BioTechniques 11, 620–627 (1991).

Contemp. Phys. (1)

J. R. Sambles, G. W. Bradbary, Fuzi Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173–183 (1991).
[CrossRef]

Electrochim. Acta (1)

A. Tadjeddine, “Influence of the electrical polarization on the surface plasmon dispersion at metal electrolyte interfaces,” Electrochim. Acta 34, 29–33 (1989).
[CrossRef]

J. Mod. Opt. (1)

H. A. Schuessler, A. Mershin, A. A. Kolomenskii, D. V. Nanopoulos, “Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers,” J. Mod. Opt. 50, 2381–2391 (2003).

J. Mod. Phys. B (1)

N. E. Mavromatos, A. Mershin, D. V. Nanopoulos, “QED-cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation,” J. Mod. Phys. B 16, 3623–3642 (2002).
[CrossRef]

Nature (1)

L. Gu, O. Braha, S. Conlan, S. Cheley, H. Bayley, “Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter,” Nature 389, 686–690 (1999).

Phys. Rev. E (1)

M. V. Sataric, J. A. Tuszynski, R. B. Zakula, “Kink-like excitations as an energy transfer mechanism in microtubules,” Phys. Rev. E 48, 589–587 (1993).
[CrossRef]

Solid State Commun. (1)

F. Abeles, T. Lopez-Rios, “Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
[CrossRef]

Surf. Sci. (5)

R. Kotz, D. M. Kolb, J. K. Saas, “Electron density effects in surface plasmon excitation on silver and gold electrodes,” Surf. Sci. 69, 359–364 (1977).
[CrossRef]

J. G. Gordon, S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499–509 (1980).
[CrossRef]

A. Tadjeddine, D. M. Kolb, R. Kotz, “The study of single crystal electrode surfaces by surface plasmon excitation,” Surf. Sci. 101, 277–285 (1980).
[CrossRef]

D. M. Kolb, R. Kotz, “Electroreflectence spectra of Ag(III) electrode,” Surf. Sci. 64, 96–108 (1977).
[CrossRef]

J. McIntyre, “Electrochemical modulation spectroscopy,” Surf. Sci. 37, 658–682 (1973).
[CrossRef]

Surf. Sci. Ser. (1)

H. Ohshima, K. Furusawa, “Electrical phenomena at interfaces,” Surf. Sci. Ser. 76, 1–17 (1998).

Z. Phys. (2)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Other (2)

L. M. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic, New York, 1980).

A. S. Dakkouri, D. M. Kolb, “Reconstruction of gold surfaces,” in Interfacial Electrochemistry (Marcel Dekker, New York, 1999), pp. 151–174.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Angle variations of the SPR for pure water with voltage sweeping from -1.5 to 1.5 V: (a) time dependence and (b) voltage dependence. The arrow in (b) indicates the direction of the process in time.

Fig. 3
Fig. 3

Angle variations of the SPR for the 5-mM KOH aqueous solution with voltage sweeping from -1.5 to 1.5 V. The arrow indicates the direction of the process in time.

Fig. 4
Fig. 4

Angle variations of the SPR for the 5-mM propeonic acid aqueous solution with voltage sweeping from -1.5 to 1.5 V. The arrow indicates the direction of the process in time.

Fig. 5
Fig. 5

Angle variations of the SPR for the 5-mM NaCl aqueous solution with voltage sweeping from -1.5 to 1.5 V. The arrow indicates the direction of the process in time.

Fig. 6
Fig. 6

Angle variations of the SPR for pure water with voltage sweeping from -0.8 to 0.8 V. The arrow indicates the direction of the process in time.

Fig. 7
Fig. 7

Angle variations of the SPR for pure water with voltage sweeping from -1.5 to 1.5 V at different sweep-potential rates.

Fig. 8
Fig. 8

Result of the calculation of the SPR shift with the diffusion model of the oxidation-reduction process. The arrows indicate the direction of the process in time. This dependence clearly shows hysteresis, which was also observed experimentally.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

σ=8kT0n1/2 sinhzeψ02kT,
ψ2=dψdxx=x2x2+ψ0,
dψdxx=x2=-8kTn01/2 sinhzeψ22kT.
Δm=e-1Δnnd,
Δn=-Δσed.
m=m0+Δm,
R=Zin,2-Z1Zin,2+Z12,
Zin,m=ZmZin,m+1-iZm tan kZ,mdmZm-iZin,m+1 tan kZ,mdm
Au2O3+6H++6e  2Au+3H2O.
Ct=D 2Cx2,
Cx, t=b 0t erfc x4Dtdt.
0 Cdx=b 0dx 0t1-2π0x4Dt e-z2dzdt
=0t4Dtdt×b=0.376b×4Dt3/2,

Metrics