Abstract

Optical techniques may potentially be used for noninvasive glucose sensing. We investigated the application of phase-sensitive optical low-coherence reflectometry (PS-OLCR) to the measurement of analyte concentrations. The dependence of the PS-OLCR signal on the concentration of various analytes, including aqueous solutions of glucose, calcium chloride, magnesium chloride, sodium chloride, potassium chloride, potassium bicarbonate, urea, bovine serum albumin, and bovine globulin, were determined in clear and turbid media. Obtained results demonstrated (1) a high degree of sensitivity and accuracy of the phase measurements of analyte concentrations with PS-OLCR; (2) a concentration-dependent change in the phase-shift for glucose that is significantly greater than that of other analytes sampled over the same physiological range; and (3) a high submillimolar sensitivity of PS-OLCR for the measurement of glucose concentration. Further exploration of the application of PS-OLCR to the noninvasive, sensitive, and specific monitoring of glucose concentration seems warranted.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
    [CrossRef]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  4. C. K. Hitzenberger, A. F. Fercher, “Differential phase contrast in optical coherence tomography,” Opt. Lett. 24, 622–624 (1999).
    [CrossRef]
  5. D. P. Davé, T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000).
    [CrossRef]
  6. M. Sticker, K. Hitzenberger, R. Leitgeb, A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography,” Opt. Lett. 26, 518–520 (2001).
    [CrossRef]
  7. T. Akkin, D. P. Dave, T. E. Milner, H. G. Rylander, “Interferometric fiber-based optical biosensor to measure ultra-small changes in refractive index,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 9–13 (2002).
    [CrossRef]
  8. R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherent tomography,” Opt. Lett. 26, 992–994 (2001).
    [CrossRef]
  9. K. V. Larin, M. S. Eledrisi, M. Motamedi, R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
    [CrossRef] [PubMed]
  10. K. V. Larin, M. Motamedi, T. V. Ashitkov, R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48, 1371–1390 (2003).
    [CrossRef] [PubMed]
  11. T. Akkin, D. P. Davé, J. Youn, S. A. Telenkov, H. G. Rylander, T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
    [CrossRef] [PubMed]
  12. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–13 (1997).
    [CrossRef]
  13. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  14. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  15. M. Bartlett, H. Jiang, “Measurement of particle size distribution in multilayered skin phantoms using polarized light spectroscopy,” Phys. Rev. E 65, 031906 (2002).
    [CrossRef]
  16. R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, I. A. Vitkin, J. F. Savary, P. Monnier, H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
    [CrossRef] [PubMed]
  17. A. Wax, C. H. Yang, R. R. Dasari, M. S. Feld, “Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering,” Appl. Opt. 40, 4222–4227 (2001).
    [CrossRef]
  18. D. Lide, Handbook of Chemistry and Physics, 82nd ed. (CRC Press, Boca Raton, Fla., 2001).
  19. M. B. Huglin, Light Scattering from Polymer Solutions (Academic, New York, 1972).
  20. A. Kratz, K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Normal reference laboratory values,” N. Engl. J. Med. 339, 1063–1072 (1998).
    [PubMed]

2003 (3)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

K. V. Larin, M. Motamedi, T. V. Ashitkov, R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48, 1371–1390 (2003).
[CrossRef] [PubMed]

T. Akkin, D. P. Davé, J. Youn, S. A. Telenkov, H. G. Rylander, T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

2002 (2)

M. Bartlett, H. Jiang, “Measurement of particle size distribution in multilayered skin phantoms using polarized light spectroscopy,” Phys. Rev. E 65, 031906 (2002).
[CrossRef]

K. V. Larin, M. S. Eledrisi, M. Motamedi, R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
[CrossRef] [PubMed]

2001 (3)

2000 (1)

1999 (2)

C. K. Hitzenberger, A. F. Fercher, “Differential phase contrast in optical coherence tomography,” Opt. Lett. 24, 622–624 (1999).
[CrossRef]

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

1998 (1)

A. Kratz, K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Normal reference laboratory values,” N. Engl. J. Med. 339, 1063–1072 (1998).
[PubMed]

1997 (2)

G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–13 (1997).
[CrossRef]

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, I. A. Vitkin, J. F. Savary, P. Monnier, H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Akkin, T.

T. Akkin, D. P. Davé, J. Youn, S. A. Telenkov, H. G. Rylander, T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

T. Akkin, D. P. Dave, T. E. Milner, H. G. Rylander, “Interferometric fiber-based optical biosensor to measure ultra-small changes in refractive index,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 9–13 (2002).
[CrossRef]

Ashitkov, T. V.

K. V. Larin, M. Motamedi, T. V. Ashitkov, R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48, 1371–1390 (2003).
[CrossRef] [PubMed]

Bartlett, M.

M. Bartlett, H. Jiang, “Measurement of particle size distribution in multilayered skin phantoms using polarized light spectroscopy,” Phys. Rev. E 65, 031906 (2002).
[CrossRef]

Bays, R.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, I. A. Vitkin, J. F. Savary, P. Monnier, H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bouma, B. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Dasari, R. R.

Dave, D. P.

T. Akkin, D. P. Dave, T. E. Milner, H. G. Rylander, “Interferometric fiber-based optical biosensor to measure ultra-small changes in refractive index,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 9–13 (2002).
[CrossRef]

Davé, D. P.

T. Akkin, D. P. Davé, J. Youn, S. A. Telenkov, H. G. Rylander, T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

D. P. Davé, T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000).
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Eledrisi, M. S.

K. V. Larin, M. S. Eledrisi, M. Motamedi, R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
[CrossRef] [PubMed]

Esenaliev, R. O.

K. V. Larin, M. Motamedi, T. V. Ashitkov, R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48, 1371–1390 (2003).
[CrossRef] [PubMed]

K. V. Larin, M. S. Eledrisi, M. Motamedi, R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
[CrossRef] [PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherent tomography,” Opt. Lett. 26, 992–994 (2001).
[CrossRef]

Feld, M. S.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–13 (1997).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

C. K. Hitzenberger, A. F. Fercher, “Differential phase contrast in optical coherence tomography,” Opt. Lett. 24, 622–624 (1999).
[CrossRef]

Hitzenberger, K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Huglin, M. B.

M. B. Huglin, Light Scattering from Polymer Solutions (Academic, New York, 1972).

Jiang, H.

M. Bartlett, H. Jiang, “Measurement of particle size distribution in multilayered skin phantoms using polarized light spectroscopy,” Phys. Rev. E 65, 031906 (2002).
[CrossRef]

Kratz, A.

A. Kratz, K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Normal reference laboratory values,” N. Engl. J. Med. 339, 1063–1072 (1998).
[PubMed]

Larin, K. V.

K. V. Larin, M. Motamedi, T. V. Ashitkov, R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48, 1371–1390 (2003).
[CrossRef] [PubMed]

K. V. Larin, M. S. Eledrisi, M. Motamedi, R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
[CrossRef] [PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherent tomography,” Opt. Lett. 26, 992–994 (2001).
[CrossRef]

Larina, I. V.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Leitgeb, R.

Lewandrowski, K. B.

A. Kratz, K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Normal reference laboratory values,” N. Engl. J. Med. 339, 1063–1072 (1998).
[PubMed]

Lide, D.

D. Lide, Handbook of Chemistry and Physics, 82nd ed. (CRC Press, Boca Raton, Fla., 2001).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Milner, T. E.

T. Akkin, D. P. Davé, J. Youn, S. A. Telenkov, H. G. Rylander, T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

D. P. Davé, T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000).
[CrossRef]

T. Akkin, D. P. Dave, T. E. Milner, H. G. Rylander, “Interferometric fiber-based optical biosensor to measure ultra-small changes in refractive index,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 9–13 (2002).
[CrossRef]

Monnier, P.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, I. A. Vitkin, J. F. Savary, P. Monnier, H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef] [PubMed]

Motamedi, M.

K. V. Larin, M. Motamedi, T. V. Ashitkov, R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48, 1371–1390 (2003).
[CrossRef] [PubMed]

K. V. Larin, M. S. Eledrisi, M. Motamedi, R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
[CrossRef] [PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherent tomography,” Opt. Lett. 26, 992–994 (2001).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Robert, D.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, I. A. Vitkin, J. F. Savary, P. Monnier, H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef] [PubMed]

Rylander, H. G.

T. Akkin, D. P. Davé, J. Youn, S. A. Telenkov, H. G. Rylander, T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

T. Akkin, D. P. Dave, T. E. Milner, H. G. Rylander, “Interferometric fiber-based optical biosensor to measure ultra-small changes in refractive index,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 9–13 (2002).
[CrossRef]

Savary, J. F.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, I. A. Vitkin, J. F. Savary, P. Monnier, H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Telenkov, S. A.

T. Akkin, D. P. Davé, J. Youn, S. A. Telenkov, H. G. Rylander, T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

Theumann, J. F.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, I. A. Vitkin, J. F. Savary, P. Monnier, H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

van den Bergh, H.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, I. A. Vitkin, J. F. Savary, P. Monnier, H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef] [PubMed]

Vitkin, I. A.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, I. A. Vitkin, J. F. Savary, P. Monnier, H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef] [PubMed]

Wagnieres, G.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, I. A. Vitkin, J. F. Savary, P. Monnier, H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef] [PubMed]

Wax, A.

Yang, C. H.

Youn, J.

T. Akkin, D. P. Davé, J. Youn, S. A. Telenkov, H. G. Rylander, T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Diabetes Care (1)

K. V. Larin, M. S. Eledrisi, M. Motamedi, R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Lasers Surg. Med. (2)

T. Akkin, D. P. Davé, J. Youn, S. A. Telenkov, H. G. Rylander, T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, I. A. Vitkin, J. F. Savary, P. Monnier, H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef] [PubMed]

N. Engl. J. Med. (1)

A. Kratz, K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Normal reference laboratory values,” N. Engl. J. Med. 339, 1063–1072 (1998).
[PubMed]

Opt. Lett. (5)

Phys. Med. Biol. (1)

K. V. Larin, M. Motamedi, T. V. Ashitkov, R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48, 1371–1390 (2003).
[CrossRef] [PubMed]

Phys. Rev. E (1)

M. Bartlett, H. Jiang, “Measurement of particle size distribution in multilayered skin phantoms using polarized light spectroscopy,” Phys. Rev. E 65, 031906 (2002).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (5)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

T. Akkin, D. P. Dave, T. E. Milner, H. G. Rylander, “Interferometric fiber-based optical biosensor to measure ultra-small changes in refractive index,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 9–13 (2002).
[CrossRef]

D. Lide, Handbook of Chemistry and Physics, 82nd ed. (CRC Press, Boca Raton, Fla., 2001).

M. B. Huglin, Light Scattering from Polymer Solutions (Academic, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the PM fiber-based dual-channel PS-OLCR used in this study: BW, birefringent wedges; PD1 and PD2, photodetectors; WP, Wollaston prism; RSODL, rapid-scanning optical delay line; and ADC, analog-to-digital converter.

Fig. 2
Fig. 2

Refractive index versus analyte concentration obtained from the white-light refractometer study and from the literature for (a) glucose, NaCl, and urea and (b) BSA.

Fig. 3
Fig. 3

Phase shift versus concentration of (a) glucose, (b) CaCl2, (c) MgCl2, (d) NaCl, (e) KCl, (f) KHCO3, (g) urea, (h) BSA, and (i) globulin obtained from the PS-OLCR study in clear media (squares with SD bars) and from the literature (solid line).

Fig. 4
Fig. 4

Phase shift versus glucose concentration obtained in turbid media (aqueous suspension of polystyrene microspheres) with scattering coefficients similar to those of human tissues in the NIR spectral range: squares, μ s ≅ 50 cm-1; circles, μ s ≅ 100 cm-1. The solid line shows PS-OLCR data obtained in clear media [see Fig. 3(a)].

Fig. 5
Fig. 5

Slope of OCT signal (squares with SD bars) and scattering coefficient (line) calculated with the Mie theory of scattering versus glucose concentration in the aqueous suspension of polystyrene microspheres.

Fig. 6
Fig. 6

Phase shift versus glucose concentration obtained from the PS-OLCR study over the small glucose-concentration range.

Fig. 7
Fig. 7

Index of refraction of water as a function of temperature measured at λ = 1.01 μm (prominent spectral line of mercury). The data were obtained from Ref. 18.

Tables (1)

Tables Icon

Table 1 Concentration-Dependent Changes in the Phase Shift and the Refractive Index for Major Analytes in the Body as Obtained from the Literature and Measured with the PS-OLCR Techniquea

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dϕdClit
dϕdCexp
dndClit
dndCexp
ΔCphysiol×dndCexp

Metrics