Abstract

Coupling loss occurs between a standard single-mode fiber and a silica waveguide when the difference between the refractive indices of the core and the cladding of the silica waveguide is high. We designed a Y-branch structure for use as a spot-size converter to reduce this coupling loss. The structure was tested with a three-dimensional beam-propagation method and was shown to exhibit a significantly reduced coupling loss, a low polarization-dependent loss, and a good tolerance of imprecision in fabrication. No additional fabrication steps are required for this proposed spot-size converter.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8, 1090–1101 (2002).
    [CrossRef]
  2. A. Kaneko, T. Goh, H. Yamada, T. Tanaka, L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
    [CrossRef]
  3. M. K. Smit, C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
    [CrossRef]
  4. M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc. 135, 56–63 (1988).
  5. T. Mizuno, T. Kitoh, T. Saida, Y. Inoue, M. Itoh, T. Shibata, H. Hibino, Y. Hida, “Low-loss 1.5% arrayed waveguide grating with narrow laterally tapered spotsize converter,” Electron. Lett. 37, 1452–1454 (2001).
    [CrossRef]
  6. Z. Weissman, I. Hendel, “Analysis of periodically segmented waveguide mode expanders,” J. Lightwave Technol. 13, 2053–2058 (1995).
    [CrossRef]
  7. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
    [CrossRef]
  8. H. Ou, “Different index contrast silica-on-silicon waveguides by PECVD,” Electron. Lett. 39, 212–213 (2003).
    [CrossRef]
  9. Q. Wang, J. Lu, S. He, “Optimal design method of a low-loss broadband Y branch with a multimode waveguide section,” Appl. Opt. 41, 7644–7649 (2002).
    [CrossRef]

2003 (1)

H. Ou, “Different index contrast silica-on-silicon waveguides by PECVD,” Electron. Lett. 39, 212–213 (2003).
[CrossRef]

2002 (2)

Q. Wang, J. Lu, S. He, “Optimal design method of a low-loss broadband Y branch with a multimode waveguide section,” Appl. Opt. 41, 7644–7649 (2002).
[CrossRef]

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8, 1090–1101 (2002).
[CrossRef]

2001 (1)

T. Mizuno, T. Kitoh, T. Saida, Y. Inoue, M. Itoh, T. Shibata, H. Hibino, Y. Hida, “Low-loss 1.5% arrayed waveguide grating with narrow laterally tapered spotsize converter,” Electron. Lett. 37, 1452–1454 (2001).
[CrossRef]

2000 (1)

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

1999 (1)

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[CrossRef]

1996 (1)

M. K. Smit, C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

1995 (1)

Z. Weissman, I. Hendel, “Analysis of periodically segmented waveguide mode expanders,” J. Lightwave Technol. 13, 2053–2058 (1995).
[CrossRef]

1988 (1)

M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc. 135, 56–63 (1988).

Goh, T.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[CrossRef]

Gopinath, A.

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

He, S.

Helfert, S.

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Hendel, I.

Z. Weissman, I. Hendel, “Analysis of periodically segmented waveguide mode expanders,” J. Lightwave Technol. 13, 2053–2058 (1995).
[CrossRef]

Hibino, H.

T. Mizuno, T. Kitoh, T. Saida, Y. Inoue, M. Itoh, T. Shibata, H. Hibino, Y. Hida, “Low-loss 1.5% arrayed waveguide grating with narrow laterally tapered spotsize converter,” Electron. Lett. 37, 1452–1454 (2001).
[CrossRef]

Hibino, Y.

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8, 1090–1101 (2002).
[CrossRef]

Hida, Y.

T. Mizuno, T. Kitoh, T. Saida, Y. Inoue, M. Itoh, T. Shibata, H. Hibino, Y. Hida, “Low-loss 1.5% arrayed waveguide grating with narrow laterally tapered spotsize converter,” Electron. Lett. 37, 1452–1454 (2001).
[CrossRef]

Inoue, Y.

T. Mizuno, T. Kitoh, T. Saida, Y. Inoue, M. Itoh, T. Shibata, H. Hibino, Y. Hida, “Low-loss 1.5% arrayed waveguide grating with narrow laterally tapered spotsize converter,” Electron. Lett. 37, 1452–1454 (2001).
[CrossRef]

Itoh, M.

T. Mizuno, T. Kitoh, T. Saida, Y. Inoue, M. Itoh, T. Shibata, H. Hibino, Y. Hida, “Low-loss 1.5% arrayed waveguide grating with narrow laterally tapered spotsize converter,” Electron. Lett. 37, 1452–1454 (2001).
[CrossRef]

Kaneko, A.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[CrossRef]

Kitoh, T.

T. Mizuno, T. Kitoh, T. Saida, Y. Inoue, M. Itoh, T. Shibata, H. Hibino, Y. Hida, “Low-loss 1.5% arrayed waveguide grating with narrow laterally tapered spotsize converter,” Electron. Lett. 37, 1452–1454 (2001).
[CrossRef]

Lu, J.

Mizuno, T.

T. Mizuno, T. Kitoh, T. Saida, Y. Inoue, M. Itoh, T. Shibata, H. Hibino, Y. Hida, “Low-loss 1.5% arrayed waveguide grating with narrow laterally tapered spotsize converter,” Electron. Lett. 37, 1452–1454 (2001).
[CrossRef]

Ogawa, L.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[CrossRef]

Ou, H.

H. Ou, “Different index contrast silica-on-silicon waveguides by PECVD,” Electron. Lett. 39, 212–213 (2003).
[CrossRef]

Pregla, R.

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Saida, T.

T. Mizuno, T. Kitoh, T. Saida, Y. Inoue, M. Itoh, T. Shibata, H. Hibino, Y. Hida, “Low-loss 1.5% arrayed waveguide grating with narrow laterally tapered spotsize converter,” Electron. Lett. 37, 1452–1454 (2001).
[CrossRef]

Scarmozzino, R.

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Shibata, T.

T. Mizuno, T. Kitoh, T. Saida, Y. Inoue, M. Itoh, T. Shibata, H. Hibino, Y. Hida, “Low-loss 1.5% arrayed waveguide grating with narrow laterally tapered spotsize converter,” Electron. Lett. 37, 1452–1454 (2001).
[CrossRef]

Smit, M. K.

M. K. Smit, C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

Stern, M. S.

M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc. 135, 56–63 (1988).

Tanaka, T.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[CrossRef]

Van Dam, C.

M. K. Smit, C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

Wang, Q.

Weissman, Z.

Z. Weissman, I. Hendel, “Analysis of periodically segmented waveguide mode expanders,” J. Lightwave Technol. 13, 2053–2058 (1995).
[CrossRef]

Yamada, H.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

H. Ou, “Different index contrast silica-on-silicon waveguides by PECVD,” Electron. Lett. 39, 212–213 (2003).
[CrossRef]

T. Mizuno, T. Kitoh, T. Saida, Y. Inoue, M. Itoh, T. Shibata, H. Hibino, Y. Hida, “Low-loss 1.5% arrayed waveguide grating with narrow laterally tapered spotsize converter,” Electron. Lett. 37, 1452–1454 (2001).
[CrossRef]

IEE Proc. (1)

M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc. 135, 56–63 (1988).

IEEE J. Sel. Top. Quantum Electron. (4)

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8, 1090–1101 (2002).
[CrossRef]

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[CrossRef]

M. K. Smit, C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

J. Lightwave Technol. (1)

Z. Weissman, I. Hendel, “Analysis of periodically segmented waveguide mode expanders,” J. Lightwave Technol. 13, 2053–2058 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top view and cross sections of the proposed Y-branch spot-size converter.

Fig. 2
Fig. 2

Contour plot of the coupling loss for several values of h x and s.

Fig. 3
Fig. 3

(a) Top view of a Y-branch spot-size converter with a gap at the tip; (b) a top view of an improved Y-branch spot-size converter with a multimode waveguide section.

Fig. 4
Fig. 4

(a) Field profile at the end of our Y-branch spot-size converter. (b) Modal field profile of a standard SMF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ= Ex, yFx, ydxdy2 |Ex, y|2dxdy  |Fx, y|2dxdy.
Lm=λ2ne0-ne2,

Metrics