Abstract

We present a novel low-cost and batch fabrication method to fabricate a Fabry-Perot (FP) cavity with a micromechanical wet-etching process, through which FP cavities can be achieved with a cavity length of from several micrometers to tens of micrometers. The parallelism of mirror elements can be well achieved without electrostatic control. The quality of an etched surface can be greatly improved by the oxidation polish process. FP cavities with a finesse of approximately 50 are achieved. Analysis shows that the effective finesse is dominated mainly by the quality of the etched surface.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hernandez, “A high luminosity spectrometer for night airglow studies,” Appl. Opt. 9, 1225–1227 (1970).
    [CrossRef] [PubMed]
  2. P. B. Hays, R. G. Roble, “A technique for recovering Doppler line profiles from Fabry-Perot interferometer fringes of very low intensity,” Appl. Opt. 10, 193–200 (1971).
    [CrossRef] [PubMed]
  3. H. F. Döbele, J. H. Massig, “Application of a Fabry-Perot spectrometer to the measurement of spectral line shifts much smaller than line width,” Appl. Opt. 15, 69–72 (1976).
    [CrossRef] [PubMed]
  4. D. E. Wohlert, K. Y. Cheng, S. T. Chou, “Temperature invariant lasing and gain spectra in self-assembled GaInAs quantum wire Fabry-Perot lasers,” Appl. Phys. Lett. 78, 1047–1049 (2001).
    [CrossRef]
  5. S. R. Mallinson, J. H. Jerman, “Miniature micromachined Fabry-Perot interferometer in silicon,” Electron. Lett. 23, 1041–1043 (1987).
    [CrossRef]
  6. J. S. Harper, P. A. Rosher, S. Fenning, S. R. Mallinson, “Application of miniature micromachined Fabry-Perot interferometer to optical fibre WDM system,” Electron. Lett. 25, 1065–1066 (1989).
    [CrossRef]
  7. J. H. Correia, M. Bartek, R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry-Perot microinterferometer for the visible spectral range,” Sens. Actuators 76, 191–196 (1999).
    [CrossRef]
  8. J. H. Jerman, D. J. Clift, S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sens. Actuators A 29, 151–158 (1991).
    [CrossRef]
  9. A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8, 393–395 (1996).
    [CrossRef]
  10. A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
    [CrossRef]
  11. M. Aziz, J. Pfeifer, M. Wohlfarth, C. Luber, S. Wu, P. Meissner, “A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems,” IEEE Photon. Technol. Lett. 12, 1522–1524 (2000).
    [CrossRef]
  12. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
    [CrossRef]
  13. Product of Epoxy Technology, http://www.epotek.com/ .
  14. M. Xiang, Y. M. Cai, Y. M. Wu, J. Y. Yang, Y. L. Wang, “Experimental study of the free spectral range (FSR) in FPI with a small plate gap,” Opt. Express 11, 3147–3152 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  15. C. Roychoudhuri, M. Hercher, “Stable multipass Fabry-Perot interferometer: design and analysis,” Appl. Opt. 16, 2514–2520 (1977).
    [CrossRef] [PubMed]
  16. P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
    [CrossRef]

2003

2001

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[CrossRef]

D. E. Wohlert, K. Y. Cheng, S. T. Chou, “Temperature invariant lasing and gain spectra in self-assembled GaInAs quantum wire Fabry-Perot lasers,” Appl. Phys. Lett. 78, 1047–1049 (2001).
[CrossRef]

2000

M. Aziz, J. Pfeifer, M. Wohlfarth, C. Luber, S. Wu, P. Meissner, “A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems,” IEEE Photon. Technol. Lett. 12, 1522–1524 (2000).
[CrossRef]

1999

J. H. Correia, M. Bartek, R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry-Perot microinterferometer for the visible spectral range,” Sens. Actuators 76, 191–196 (1999).
[CrossRef]

1998

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

1996

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8, 393–395 (1996).
[CrossRef]

1991

J. H. Jerman, D. J. Clift, S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sens. Actuators A 29, 151–158 (1991).
[CrossRef]

1989

J. S. Harper, P. A. Rosher, S. Fenning, S. R. Mallinson, “Application of miniature micromachined Fabry-Perot interferometer to optical fibre WDM system,” Electron. Lett. 25, 1065–1066 (1989).
[CrossRef]

1987

S. R. Mallinson, J. H. Jerman, “Miniature micromachined Fabry-Perot interferometer in silicon,” Electron. Lett. 23, 1041–1043 (1987).
[CrossRef]

1981

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

1977

1976

1971

1970

Atherton, P. D.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Aziz, M.

M. Aziz, J. Pfeifer, M. Wohlfarth, C. Luber, S. Wu, P. Meissner, “A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems,” IEEE Photon. Technol. Lett. 12, 1522–1524 (2000).
[CrossRef]

Bartek, M.

J. H. Correia, M. Bartek, R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry-Perot microinterferometer for the visible spectral range,” Sens. Actuators 76, 191–196 (1999).
[CrossRef]

Benyatou, T.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Blondeau, R.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Cai, Y. M.

Cerrina, F.

Cheng, K. Y.

D. E. Wohlert, K. Y. Cheng, S. T. Chou, “Temperature invariant lasing and gain spectra in self-assembled GaInAs quantum wire Fabry-Perot lasers,” Appl. Phys. Lett. 78, 1047–1049 (2001).
[CrossRef]

Chou, S. T.

D. E. Wohlert, K. Y. Cheng, S. T. Chou, “Temperature invariant lasing and gain spectra in self-assembled GaInAs quantum wire Fabry-Perot lasers,” Appl. Phys. Lett. 78, 1047–1049 (2001).
[CrossRef]

Clift, D. J.

J. H. Jerman, D. J. Clift, S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sens. Actuators A 29, 151–158 (1991).
[CrossRef]

Correia, J. H.

J. H. Correia, M. Bartek, R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry-Perot microinterferometer for the visible spectral range,” Sens. Actuators 76, 191–196 (1999).
[CrossRef]

Döbele, H. F.

Fenning, S.

J. S. Harper, P. A. Rosher, S. Fenning, S. R. Mallinson, “Application of miniature micromachined Fabry-Perot interferometer to optical fibre WDM system,” Electron. Lett. 25, 1065–1066 (1989).
[CrossRef]

Guillot, G.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Haronian, D.

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8, 393–395 (1996).
[CrossRef]

Harper, J. S.

J. S. Harper, P. A. Rosher, S. Fenning, S. R. Mallinson, “Application of miniature micromachined Fabry-Perot interferometer to optical fibre WDM system,” Electron. Lett. 25, 1065–1066 (1989).
[CrossRef]

Hays, P. B.

Hercher, M.

Hernandez, G.

Hicks, T. R.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Jerman, J. H.

J. H. Jerman, D. J. Clift, S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sens. Actuators A 29, 151–158 (1991).
[CrossRef]

S. R. Mallinson, J. H. Jerman, “Miniature micromachined Fabry-Perot interferometer in silicon,” Electron. Lett. 23, 1041–1043 (1987).
[CrossRef]

Kimerling, L. C.

Leclercq, J. L.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Ledantec, R.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Lee, K. K.

Lim, D. R.

Lo, Y. H.

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8, 393–395 (1996).
[CrossRef]

Luber, C.

M. Aziz, J. Pfeifer, M. Wohlfarth, C. Luber, S. Wu, P. Meissner, “A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems,” IEEE Photon. Technol. Lett. 12, 1522–1524 (2000).
[CrossRef]

Mallinson, S. R.

J. H. Jerman, D. J. Clift, S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sens. Actuators A 29, 151–158 (1991).
[CrossRef]

J. S. Harper, P. A. Rosher, S. Fenning, S. R. Mallinson, “Application of miniature micromachined Fabry-Perot interferometer to optical fibre WDM system,” Electron. Lett. 25, 1065–1066 (1989).
[CrossRef]

S. R. Mallinson, J. H. Jerman, “Miniature micromachined Fabry-Perot interferometer in silicon,” Electron. Lett. 23, 1041–1043 (1987).
[CrossRef]

Massig, J. H.

Meissner, P.

M. Aziz, J. Pfeifer, M. Wohlfarth, C. Luber, S. Wu, P. Meissner, “A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems,” IEEE Photon. Technol. Lett. 12, 1522–1524 (2000).
[CrossRef]

Mozdy, E.

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8, 393–395 (1996).
[CrossRef]

Pfeifer, J.

M. Aziz, J. Pfeifer, M. Wohlfarth, C. Luber, S. Wu, P. Meissner, “A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems,” IEEE Photon. Technol. Lett. 12, 1522–1524 (2000).
[CrossRef]

Reay, N. K.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Ring, J.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Roble, R. G.

Rondi, D.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Rosher, P. A.

J. S. Harper, P. A. Rosher, S. Fenning, S. R. Mallinson, “Application of miniature micromachined Fabry-Perot interferometer to optical fibre WDM system,” Electron. Lett. 25, 1065–1066 (1989).
[CrossRef]

Roychoudhuri, C.

Seassal, C.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Shin, J.

Spisser, A.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Tran, A. T. T. D.

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8, 393–395 (1996).
[CrossRef]

Viktorovitch, P.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Wang, Y. L.

Wohlert, D. E.

D. E. Wohlert, K. Y. Cheng, S. T. Chou, “Temperature invariant lasing and gain spectra in self-assembled GaInAs quantum wire Fabry-Perot lasers,” Appl. Phys. Lett. 78, 1047–1049 (2001).
[CrossRef]

Wohlfarth, M.

M. Aziz, J. Pfeifer, M. Wohlfarth, C. Luber, S. Wu, P. Meissner, “A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems,” IEEE Photon. Technol. Lett. 12, 1522–1524 (2000).
[CrossRef]

Wolffenbuttel, R. F.

J. H. Correia, M. Bartek, R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry-Perot microinterferometer for the visible spectral range,” Sens. Actuators 76, 191–196 (1999).
[CrossRef]

Wu, S.

M. Aziz, J. Pfeifer, M. Wohlfarth, C. Luber, S. Wu, P. Meissner, “A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems,” IEEE Photon. Technol. Lett. 12, 1522–1524 (2000).
[CrossRef]

Wu, Y. M.

Xiang, M.

Yang, J. Y.

Zhu, Z. H.

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8, 393–395 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. E. Wohlert, K. Y. Cheng, S. T. Chou, “Temperature invariant lasing and gain spectra in self-assembled GaInAs quantum wire Fabry-Perot lasers,” Appl. Phys. Lett. 78, 1047–1049 (2001).
[CrossRef]

Electron. Lett.

S. R. Mallinson, J. H. Jerman, “Miniature micromachined Fabry-Perot interferometer in silicon,” Electron. Lett. 23, 1041–1043 (1987).
[CrossRef]

J. S. Harper, P. A. Rosher, S. Fenning, S. R. Mallinson, “Application of miniature micromachined Fabry-Perot interferometer to optical fibre WDM system,” Electron. Lett. 25, 1065–1066 (1989).
[CrossRef]

IEEE Photon. Technol. Lett.

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8, 393–395 (1996).
[CrossRef]

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

M. Aziz, J. Pfeifer, M. Wohlfarth, C. Luber, S. Wu, P. Meissner, “A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems,” IEEE Photon. Technol. Lett. 12, 1522–1524 (2000).
[CrossRef]

Opt. Eng.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators

J. H. Correia, M. Bartek, R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry-Perot microinterferometer for the visible spectral range,” Sens. Actuators 76, 191–196 (1999).
[CrossRef]

Sens. Actuators A

J. H. Jerman, D. J. Clift, S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sens. Actuators A 29, 151–158 (1991).
[CrossRef]

Other

Product of Epoxy Technology, http://www.epotek.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the bonding process: (a) before bonding; (b) after bonding; 1, top silicon wafer; 2, bottom silicon wafer with spacers; 3, spacers; 4, antireflective film; 5, HR film; 6, adhesive.

Fig. 2
Fig. 2

Surface flatness photo of the original wafer.

Fig. 3
Fig. 3

Schematic diagram of the spacer mask.

Fig. 4
Fig. 4

RMS roughness on the etched surface before and after polishing.

Fig. 5
Fig. 5

Height uniformity of spacers at different etch depths.

Fig. 6
Fig. 6

Inclination angle of the top and bottom wafers.

Fig. 7
Fig. 7

Optical test sketch.

Fig. 8
Fig. 8

Transmitted spectrum of (a) sample 1, (b) sample 2, (c) sample 3.

Tables (2)

Tables Icon

Table 1 Parameters of Samples

Tables Icon

Table 2 Finesse of Samples

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ=Δh/L.
FE=FR-2+FD-2-1/2,
FR=πR1/2/1-R.
Fp=λ/31/2δp, Fs=λ/2δs, Frms=λ/4.7δrms,
δp=dθ,
FD=Fp-2+Fs-2+Frms-2-1/2.

Metrics