Abstract

Reference-frequency generation for optical fiber instrumentation is now restricted to the frequency bands in which the reference materials have well-resolved absorption lines. We study analytically and experimentally the possibility of generating reference wavelengths by use of Raman-enhanced four-photon mixing in an optical fiber. We show that it is possible to generate efficiently frequencies that are 10–40 nm away from the absorption bands of the usual reference materials: acetylene (12C2H2), hydrogen cyanide (HCN), and similar or derived species. As a demonstration we use an acetylene cell to generate reference frequencies that cover the whole C (1530–1565 nm) and some part of the L (1565–1625 nm) transmission bands of the optical fiber.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. C. Swann, S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000).
    [CrossRef]
  2. K. Nakagawa, M. de Labachelerie, Y. Awaji, M. Kourogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. B 13, 2708–2714 (1996).
    [CrossRef]
  3. M. de Labachelerie, K. Nakagawa, M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
    [CrossRef] [PubMed]
  4. Y. Awaji, M. de Labachelerie, M. Ohtsu, H. Sasada, “Optical frequency measurement of the H12C1 4N Lamb-dip-stabilized 1.5-μm diode laser,” Opt. Lett. 20, 2024–2026 (1995).
    [CrossRef] [PubMed]
  5. S. Trillo, S. Wabnitz, “Parametric and Raman amplification in birefringent fibers,” J. Opt. Soc. Am. B 9, 1061–1082 (1992).
    [CrossRef]
  6. T. Sylvestre, H. Maillotte, E. Lantz, T. Dinda, “Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber,” Opt. Lett. 24, 1561–1563 (1999).
    [CrossRef]
  7. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001), Chap. 1.
  8. K. J. Blow, D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
    [CrossRef]
  9. S. L. Gilbert, W. C. Swam, “Standard Reference Material: Acetylene 12C2H2 Absorption Refence for 1510 nm to 1540 nm Wavelength Calibration—SRM 2517a,” NIST Spec. Publ.260-133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001).

2000 (1)

1999 (1)

1996 (1)

1995 (1)

1994 (1)

1992 (1)

1989 (1)

K. J. Blow, D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001), Chap. 1.

Awaji, Y.

Blow, K. J.

K. J. Blow, D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

de Labachelerie, M.

Dinda, T.

Gilbert, S. L.

W. C. Swann, S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000).
[CrossRef]

S. L. Gilbert, W. C. Swam, “Standard Reference Material: Acetylene 12C2H2 Absorption Refence for 1510 nm to 1540 nm Wavelength Calibration—SRM 2517a,” NIST Spec. Publ.260-133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001).

Kourogi, M.

Lantz, E.

Maillotte, H.

Nakagawa, K.

Ohtsu, M.

Sasada, H.

Swam, W. C.

S. L. Gilbert, W. C. Swam, “Standard Reference Material: Acetylene 12C2H2 Absorption Refence for 1510 nm to 1540 nm Wavelength Calibration—SRM 2517a,” NIST Spec. Publ.260-133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001).

Swann, W. C.

Sylvestre, T.

Trillo, S.

Wabnitz, S.

Wood, D.

K. J. Blow, D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. J. Blow, D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (3)

Other (2)

S. L. Gilbert, W. C. Swam, “Standard Reference Material: Acetylene 12C2H2 Absorption Refence for 1510 nm to 1540 nm Wavelength Calibration—SRM 2517a,” NIST Spec. Publ.260-133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Wavelength arrangement.

Fig. 2
Fig. 2

Absorption spectrum of the 12CH2 cell contained in reference material 2517a.

Fig. 3
Fig. 3

Theoretical estimation of FWM power related to wavelength, with and without a Raman pump.

Fig. 4
Fig. 4

Schematic of the experiment: TLSs, tunable lasers; CA, 12C2H2 cell; EDFA, erbium-doped fiber amplifier; PM, powermeter; ATT, attenuator; OSA, optical spectrum analyzer; DSF, dispersion-shifted fiber (λ0 = 1540.9 nm); C, circulator; SWs, switches.

Fig. 5
Fig. 5

Experimental results.

Tables (1)

Tables Icon

Table 1 Possible Reference Frequencies Compared with ITU Frequenciesa

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

χ3Ω=χe3+χR3Ω,
χRΩ=ρ1-ρ χeτ12+τ22τ12+τ221+iτ1Ω,
|Ap|>|A1|, |A2||Am|.
dApdz=α2 Ap-iγ0|Ap|2Ap,
dA1dz=-α2 A1-i2γΩ1|Ap|2A1,
dA2dz=-α2 A2-i2γΩ2|Ap|2A2,
dAmdz=-α2 Am-i2γΩm|Ap|2Am+iγeA22A1* expiΔβz,
γΩi=3ωp8ncAeffχe+χRΩi,
γe=3ω28ncAeff χe.
|ApL|2=PpL,
|A10|2=P10,
|A20|2=P20,
Am0=0.
Ap=PpLexp-izγ0PpL,
A1=P10exp2izγΩ1PpL,
A2=P20exp2izγΩ2PpL,
Am=aexp4izγΩmPpL×exp-2izγ*Ω1PpL×expiΔβz-exp2izγΩmPpL,
a=iγeP20P10b+c+d+e,
b=-2iγΩmPpL,
c=4iγΩ2PpL,
d=-2iγ*Ω1PpL,
e=iΔβ.
Δβ=β2ω1-ω22+β412ω1-ω24.

Metrics