Abstract

We observed the tunability of a 946-nm Nd:YAG microchip laser by using a double-cavity configuration. We shifted the lasers wavelength from 938 to 946 nm by changing the thickness of the air gap. In addition, differences in reflectivity of the output mirror yielded the tunable range of the 946-nm band, with the center oscillation wavelength maintained at 946.1 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Poberaj, A. Assion, A. Fix, C. Kiemle, M. Wirth, G. Ehret, Advances in Laser Remote Sensing, selected papers presented at the 20th International Laser Radar Conference (American Geophysical Union, Washington, D.C., 2000), p. 325.
  2. M. Bode, I. Freite, A. Tunnermann, H. Welling, “Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region,” Opt. Lett. 22, 1220–1222 (1997).
    [CrossRef] [PubMed]
  3. T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm: YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998).
    [CrossRef]
  4. J. Izawa, N. Nakajima, H. Hara, Y. Arimoto, “Comparison of lasing performance of Tm,Ho:YLF lasers by use of single and double cavities,” Appl. Opt. 39, 2418–2421 (2000).
    [CrossRef]
  5. W. Kochner, “Laser diodes,” in Solid State Laser Engineering, W. Koechner, ed., Vol. 1. of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1988), Chap. 6.1.4, p. 274.
  6. A. E. Siegman, Lasers (University Science, Mill Valley, Calif.1986), p. 527.
  7. Ref. 6, p. 419.
  8. S. Singh, R. G. Smith, L. G. Van Vitent, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd+3 in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
    [CrossRef]
  9. R. Koch, W. A. Clarkson, D. C. Hanna, “Diode pumped cw Nd:YAG laser operating at 938.5 nm,” Electron. Lett. 32, 553–554 (1996).
    [CrossRef]
  10. T. Kellner, F. Heine, G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, -BaB2O4, and LiB3O5,” Appl. Phys. B 65, 789–792 (1997).
    [CrossRef]
  11. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5-x)O12 materials: application toward a compositionally tuned 0.94-m laser,” J. Opt. Soc. Am. B. 15, 2794–2801 (1998).
    [CrossRef]
  12. M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194, 207–211 (2001).
    [CrossRef]
  13. N. P. Barnes, B. M. Walsh, R. L. Hutcheson, R. W. Ewuall, “Pulsed4F3/2 to 4I9/2 operation of Nd losers,” J. Opt. Soc. Am. B 16, 2169–2177 (1999).
    [CrossRef]

2001 (1)

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194, 207–211 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (2)

T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm: YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5-x)O12 materials: application toward a compositionally tuned 0.94-m laser,” J. Opt. Soc. Am. B. 15, 2794–2801 (1998).
[CrossRef]

1997 (2)

M. Bode, I. Freite, A. Tunnermann, H. Welling, “Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region,” Opt. Lett. 22, 1220–1222 (1997).
[CrossRef] [PubMed]

T. Kellner, F. Heine, G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, -BaB2O4, and LiB3O5,” Appl. Phys. B 65, 789–792 (1997).
[CrossRef]

1996 (1)

R. Koch, W. A. Clarkson, D. C. Hanna, “Diode pumped cw Nd:YAG laser operating at 938.5 nm,” Electron. Lett. 32, 553–554 (1996).
[CrossRef]

1974 (1)

S. Singh, R. G. Smith, L. G. Van Vitent, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd+3 in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Arimoto, Y.

Assion, A.

G. Poberaj, A. Assion, A. Fix, C. Kiemle, M. Wirth, G. Ehret, Advances in Laser Remote Sensing, selected papers presented at the 20th International Laser Radar Conference (American Geophysical Union, Washington, D.C., 2000), p. 325.

Bagayev, S. N.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194, 207–211 (2001).
[CrossRef]

Barnes, N. P.

N. P. Barnes, B. M. Walsh, R. L. Hutcheson, R. W. Ewuall, “Pulsed4F3/2 to 4I9/2 operation of Nd losers,” J. Opt. Soc. Am. B 16, 2169–2177 (1999).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5-x)O12 materials: application toward a compositionally tuned 0.94-m laser,” J. Opt. Soc. Am. B. 15, 2794–2801 (1998).
[CrossRef]

Belkin, A. M.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194, 207–211 (2001).
[CrossRef]

Bode, M.

Clarkson, W. A.

R. Koch, W. A. Clarkson, D. C. Hanna, “Diode pumped cw Nd:YAG laser operating at 938.5 nm,” Electron. Lett. 32, 553–554 (1996).
[CrossRef]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5-x)O12 materials: application toward a compositionally tuned 0.94-m laser,” J. Opt. Soc. Am. B. 15, 2794–2801 (1998).
[CrossRef]

Ehret, G.

G. Poberaj, A. Assion, A. Fix, C. Kiemle, M. Wirth, G. Ehret, Advances in Laser Remote Sensing, selected papers presented at the 20th International Laser Radar Conference (American Geophysical Union, Washington, D.C., 2000), p. 325.

Equall, R. W.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5-x)O12 materials: application toward a compositionally tuned 0.94-m laser,” J. Opt. Soc. Am. B. 15, 2794–2801 (1998).
[CrossRef]

Ewuall, R. W.

Fix, A.

G. Poberaj, A. Assion, A. Fix, C. Kiemle, M. Wirth, G. Ehret, Advances in Laser Remote Sensing, selected papers presented at the 20th International Laser Radar Conference (American Geophysical Union, Washington, D.C., 2000), p. 325.

Freite, I.

Hanna, D. C.

R. Koch, W. A. Clarkson, D. C. Hanna, “Diode pumped cw Nd:YAG laser operating at 938.5 nm,” Electron. Lett. 32, 553–554 (1996).
[CrossRef]

Hara, H.

J. Izawa, N. Nakajima, H. Hara, Y. Arimoto, “Comparison of lasing performance of Tm,Ho:YLF lasers by use of single and double cavities,” Appl. Opt. 39, 2418–2421 (2000).
[CrossRef]

T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm: YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998).
[CrossRef]

Heine, F.

T. Kellner, F. Heine, G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, -BaB2O4, and LiB3O5,” Appl. Phys. B 65, 789–792 (1997).
[CrossRef]

Huber, G.

T. Kellner, F. Heine, G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, -BaB2O4, and LiB3O5,” Appl. Phys. B 65, 789–792 (1997).
[CrossRef]

Hutcheson, R. L.

N. P. Barnes, B. M. Walsh, R. L. Hutcheson, R. W. Ewuall, “Pulsed4F3/2 to 4I9/2 operation of Nd losers,” J. Opt. Soc. Am. B 16, 2169–2177 (1999).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5-x)O12 materials: application toward a compositionally tuned 0.94-m laser,” J. Opt. Soc. Am. B. 15, 2794–2801 (1998).
[CrossRef]

Izawa, J.

J. Izawa, N. Nakajima, H. Hara, Y. Arimoto, “Comparison of lasing performance of Tm,Ho:YLF lasers by use of single and double cavities,” Appl. Opt. 39, 2418–2421 (2000).
[CrossRef]

T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm: YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998).
[CrossRef]

Kellner, T.

T. Kellner, F. Heine, G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, -BaB2O4, and LiB3O5,” Appl. Phys. B 65, 789–792 (1997).
[CrossRef]

Kiemle, C.

G. Poberaj, A. Assion, A. Fix, C. Kiemle, M. Wirth, G. Ehret, Advances in Laser Remote Sensing, selected papers presented at the 20th International Laser Radar Conference (American Geophysical Union, Washington, D.C., 2000), p. 325.

Koch, R.

R. Koch, W. A. Clarkson, D. C. Hanna, “Diode pumped cw Nd:YAG laser operating at 938.5 nm,” Electron. Lett. 32, 553–554 (1996).
[CrossRef]

Kochner, W.

W. Kochner, “Laser diodes,” in Solid State Laser Engineering, W. Koechner, ed., Vol. 1. of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1988), Chap. 6.1.4, p. 274.

Nakajima, N.

Okhapkin, M. V.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194, 207–211 (2001).
[CrossRef]

Poberaj, G.

G. Poberaj, A. Assion, A. Fix, C. Kiemle, M. Wirth, G. Ehret, Advances in Laser Remote Sensing, selected papers presented at the 20th International Laser Radar Conference (American Geophysical Union, Washington, D.C., 2000), p. 325.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif.1986), p. 527.

Singh, S.

S. Singh, R. G. Smith, L. G. Van Vitent, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd+3 in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Skvortsov, M. N.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194, 207–211 (2001).
[CrossRef]

Smith, R. G.

S. Singh, R. G. Smith, L. G. Van Vitent, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd+3 in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Tunnermann, A.

Vitent, L. G. Van

S. Singh, R. G. Smith, L. G. Van Vitent, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd+3 in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Walsh, B. M.

N. P. Barnes, B. M. Walsh, R. L. Hutcheson, R. W. Ewuall, “Pulsed4F3/2 to 4I9/2 operation of Nd losers,” J. Opt. Soc. Am. B 16, 2169–2177 (1999).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5-x)O12 materials: application toward a compositionally tuned 0.94-m laser,” J. Opt. Soc. Am. B. 15, 2794–2801 (1998).
[CrossRef]

Welling, H.

Wirth, M.

G. Poberaj, A. Assion, A. Fix, C. Kiemle, M. Wirth, G. Ehret, Advances in Laser Remote Sensing, selected papers presented at the 20th International Laser Radar Conference (American Geophysical Union, Washington, D.C., 2000), p. 325.

Yokozawa, T.

T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm: YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

T. Kellner, F. Heine, G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, -BaB2O4, and LiB3O5,” Appl. Phys. B 65, 789–792 (1997).
[CrossRef]

Electron. Lett. (1)

R. Koch, W. A. Clarkson, D. C. Hanna, “Diode pumped cw Nd:YAG laser operating at 938.5 nm,” Electron. Lett. 32, 553–554 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5-x)O12 materials: application toward a compositionally tuned 0.94-m laser,” J. Opt. Soc. Am. B. 15, 2794–2801 (1998).
[CrossRef]

Opt. Commun. (2)

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194, 207–211 (2001).
[CrossRef]

T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm: YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

S. Singh, R. G. Smith, L. G. Van Vitent, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd+3 in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Other (4)

G. Poberaj, A. Assion, A. Fix, C. Kiemle, M. Wirth, G. Ehret, Advances in Laser Remote Sensing, selected papers presented at the 20th International Laser Radar Conference (American Geophysical Union, Washington, D.C., 2000), p. 325.

W. Kochner, “Laser diodes,” in Solid State Laser Engineering, W. Koechner, ed., Vol. 1. of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1988), Chap. 6.1.4, p. 274.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif.1986), p. 527.

Ref. 6, p. 419.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the double-cavity configuration microchip laser.

Fig. 2
Fig. 2

Oscillation wavelength of a Nd:YAG microchip laser with a double-cavity configuration as a function of deviation from an initial air gap thickness. The laser crystal’s length and the reflectivity of the output mirror were 1.5 mm and 99%, respectively. The pump power of 510 mW and the crystal temperature of 20 were kept constant during the experiments.

Fig. 3
Fig. 3

Tunability of a 946-nm oscillation wavelength for 96% and a 99% reflective output mirrors. The input power of 440 mW, the air gap thickness of 280 μm, the crystal temperature of 20 °C and the crystal length of 1.5 mm were fixed for these experiments.

Fig. 4
Fig. 4

Output power as a function of oscillation wavelength. Reflectivities of the output mirrors were 96% and 98%. The pump power of 510 mW and the air gap thickness of 100 μm were constant for these experiments. The laser crystal length was 1.5 mm.

Metrics