Abstract

A one-wavelength tuning method is proposed to solve the tuning difficulty in a tunable optical filter based on cascaded cells. This method ensures that the optical path difference variation of all of the cells for the tuning is less than one wavelength and lowers the relative tuning accuracy requirement. Simulations show that different cells have different cross talk and loss deterioration when they undergo an error in optical path difference between the O-ray and the E-ray. An optimal error ratio in each cell is obtained. Under the error ratio, the deterioration from the random error in every cell is further simulated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Goh, S. Y. Set, K. Kikuchi, “Widely tunable optical filter based on fiber Bragg,” IEEE Photonics Technol. Lett. 14, 1306–1308 (2002).
    [CrossRef]
  2. Ph. Dittrich, G. Montemezzani, P. Gunter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002).
    [CrossRef]
  3. H. S. Park, K. Y. Song, S. H. Yun, B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
    [CrossRef]
  4. A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55 μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1998).
    [CrossRef]
  5. K. Djordjev, S.-J. Choi, S.-J. Choi, P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
    [CrossRef]
  6. S. Matsumoto, K. Hirabayashi, S. Sakata, T. Hayashi, “Tunable wavelength filter using nano-sized droplets of liquid crystal,” IEEE Photon. Technol. Lett. 11, 442–445 (1999).
    [CrossRef]
  7. O. Ishida, H. Takahashi, Y. Inoue, “Digitally tunable optical filters using arrayed-waveguide grating multiplexers and optical switches,” J. Lightwave Technol. 15, 321–327 (1997).
    [CrossRef]
  8. O. Schwelb, I. Frigyes, “All-optical tunable filters built with discontinuity-assisted ring resonators,” J. Lightwave Technol. 19, 380–386 (2001).
    [CrossRef]
  9. A. Zeng, X. G. Ye, J. Chon, F. Liang, “25 GHz interleavers with ultra-low chromatic dispersion,” in Optical Fiber Communications (Optical Society of America, Washington, D.C., 2002), paper ThC4.
  10. Z. Hu, “A high performance tunable optical filter based on cascaded polarization interference filter,” Chin. Opt. Lett. 2, 15–17 (2004).

2004

2002

K. Djordjev, S.-J. Choi, S.-J. Choi, P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
[CrossRef]

C. S. Goh, S. Y. Set, K. Kikuchi, “Widely tunable optical filter based on fiber Bragg,” IEEE Photonics Technol. Lett. 14, 1306–1308 (2002).
[CrossRef]

Ph. Dittrich, G. Montemezzani, P. Gunter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002).
[CrossRef]

H. S. Park, K. Y. Song, S. H. Yun, B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
[CrossRef]

2001

1999

S. Matsumoto, K. Hirabayashi, S. Sakata, T. Hayashi, “Tunable wavelength filter using nano-sized droplets of liquid crystal,” IEEE Photon. Technol. Lett. 11, 442–445 (1999).
[CrossRef]

1998

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55 μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1998).
[CrossRef]

1997

O. Ishida, H. Takahashi, Y. Inoue, “Digitally tunable optical filters using arrayed-waveguide grating multiplexers and optical switches,” J. Lightwave Technol. 15, 321–327 (1997).
[CrossRef]

Benyattou, T.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55 μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1998).
[CrossRef]

Blondeau, R.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55 μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1998).
[CrossRef]

Choi, S.-J.

K. Djordjev, S.-J. Choi, S.-J. Choi, P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
[CrossRef]

K. Djordjev, S.-J. Choi, S.-J. Choi, P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
[CrossRef]

Chon, J.

A. Zeng, X. G. Ye, J. Chon, F. Liang, “25 GHz interleavers with ultra-low chromatic dispersion,” in Optical Fiber Communications (Optical Society of America, Washington, D.C., 2002), paper ThC4.

Dapkus, P. D.

K. Djordjev, S.-J. Choi, S.-J. Choi, P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
[CrossRef]

Dittrich, Ph.

Ph. Dittrich, G. Montemezzani, P. Gunter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002).
[CrossRef]

Djordjev, K.

K. Djordjev, S.-J. Choi, S.-J. Choi, P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
[CrossRef]

Frigyes, I.

Goh, C. S.

C. S. Goh, S. Y. Set, K. Kikuchi, “Widely tunable optical filter based on fiber Bragg,” IEEE Photonics Technol. Lett. 14, 1306–1308 (2002).
[CrossRef]

Guillot, G.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55 μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1998).
[CrossRef]

Gunter, P.

Ph. Dittrich, G. Montemezzani, P. Gunter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002).
[CrossRef]

Hayashi, T.

S. Matsumoto, K. Hirabayashi, S. Sakata, T. Hayashi, “Tunable wavelength filter using nano-sized droplets of liquid crystal,” IEEE Photon. Technol. Lett. 11, 442–445 (1999).
[CrossRef]

Hirabayashi, K.

S. Matsumoto, K. Hirabayashi, S. Sakata, T. Hayashi, “Tunable wavelength filter using nano-sized droplets of liquid crystal,” IEEE Photon. Technol. Lett. 11, 442–445 (1999).
[CrossRef]

Hu, Z.

Inoue, Y.

O. Ishida, H. Takahashi, Y. Inoue, “Digitally tunable optical filters using arrayed-waveguide grating multiplexers and optical switches,” J. Lightwave Technol. 15, 321–327 (1997).
[CrossRef]

Ishida, O.

O. Ishida, H. Takahashi, Y. Inoue, “Digitally tunable optical filters using arrayed-waveguide grating multiplexers and optical switches,” J. Lightwave Technol. 15, 321–327 (1997).
[CrossRef]

Kikuchi, K.

C. S. Goh, S. Y. Set, K. Kikuchi, “Widely tunable optical filter based on fiber Bragg,” IEEE Photonics Technol. Lett. 14, 1306–1308 (2002).
[CrossRef]

Kim, B. Y.

Leclercq, J. L.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55 μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1998).
[CrossRef]

Ledantec, R.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55 μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1998).
[CrossRef]

Liang, F.

A. Zeng, X. G. Ye, J. Chon, F. Liang, “25 GHz interleavers with ultra-low chromatic dispersion,” in Optical Fiber Communications (Optical Society of America, Washington, D.C., 2002), paper ThC4.

Matsumoto, S.

S. Matsumoto, K. Hirabayashi, S. Sakata, T. Hayashi, “Tunable wavelength filter using nano-sized droplets of liquid crystal,” IEEE Photon. Technol. Lett. 11, 442–445 (1999).
[CrossRef]

Montemezzani, G.

Ph. Dittrich, G. Montemezzani, P. Gunter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002).
[CrossRef]

Park, H. S.

Rondi, D.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55 μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1998).
[CrossRef]

Sakata, S.

S. Matsumoto, K. Hirabayashi, S. Sakata, T. Hayashi, “Tunable wavelength filter using nano-sized droplets of liquid crystal,” IEEE Photon. Technol. Lett. 11, 442–445 (1999).
[CrossRef]

Schwelb, O.

Seassal, C.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55 μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1998).
[CrossRef]

Set, S. Y.

C. S. Goh, S. Y. Set, K. Kikuchi, “Widely tunable optical filter based on fiber Bragg,” IEEE Photonics Technol. Lett. 14, 1306–1308 (2002).
[CrossRef]

Song, K. Y.

Spisser, A.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55 μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1998).
[CrossRef]

Takahashi, H.

O. Ishida, H. Takahashi, Y. Inoue, “Digitally tunable optical filters using arrayed-waveguide grating multiplexers and optical switches,” J. Lightwave Technol. 15, 321–327 (1997).
[CrossRef]

Viktorovitch, P.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55 μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1998).
[CrossRef]

Ye, X. G.

A. Zeng, X. G. Ye, J. Chon, F. Liang, “25 GHz interleavers with ultra-low chromatic dispersion,” in Optical Fiber Communications (Optical Society of America, Washington, D.C., 2002), paper ThC4.

Yun, S. H.

Zeng, A.

A. Zeng, X. G. Ye, J. Chon, F. Liang, “25 GHz interleavers with ultra-low chromatic dispersion,” in Optical Fiber Communications (Optical Society of America, Washington, D.C., 2002), paper ThC4.

Chin. Opt. Lett.

IEEE Photon. Technol. Lett.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55 μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1998).
[CrossRef]

K. Djordjev, S.-J. Choi, S.-J. Choi, P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
[CrossRef]

S. Matsumoto, K. Hirabayashi, S. Sakata, T. Hayashi, “Tunable wavelength filter using nano-sized droplets of liquid crystal,” IEEE Photon. Technol. Lett. 11, 442–445 (1999).
[CrossRef]

IEEE Photonics Technol. Lett.

C. S. Goh, S. Y. Set, K. Kikuchi, “Widely tunable optical filter based on fiber Bragg,” IEEE Photonics Technol. Lett. 14, 1306–1308 (2002).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

Ph. Dittrich, G. Montemezzani, P. Gunter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002).
[CrossRef]

Other

A. Zeng, X. G. Ye, J. Chon, F. Liang, “25 GHz interleavers with ultra-low chromatic dispersion,” in Optical Fiber Communications (Optical Society of America, Washington, D.C., 2002), paper ThC4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the tunable optical filter with cascaded cells.

Fig. 2
Fig. 2

Calculated relative transmission of the filter. (a) and (b), strict OPDOE proportion; (c) and (d), one-wavelength-tuning method.

Fig. 3
Fig. 3

Simulation results of (a) the loss and (b) the cross talk versus the error in each cell. Numbers on the curves represent the ordinal of the cell with the error.

Fig. 4
Fig. 4

Relative transmission of the filter with 0.1-μm error in the indicating cell.

Fig. 5
Fig. 5

(a) Cross talk and (b) transmission loss differences between OWTM and strict proportion. Numbers on the curves represent the ordinal of the cell with the error.

Fig. 6
Fig. 6

(a) Mean cross talk and (b) mean loss versus the rms of random error in all cells. The rms error in the fifth cell is served as a reference, the last and the sixth cells are 2.5 times less than the fifth, and the first is 30 times less than the fifth. The random error is assumed to be zero mean and normal distribution.

Tables (1)

Tables Icon

Table 1 OPDOE Comparison between the Strict Proportion (mi, Li) and OWTM (mi′, Li0, ΔLi) under the Predetermined Frequency at 186 THz

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

TSPv=i=19cos2π×Li/cv.
Li0+ΔLi=mi×λ,
TOWTMν=i=19cos2πLi0+ΔLi/cν
TOWTMεjν=i=19cos2πLi0+ΔLi+εj/cν.
crossεj=maxi=19cos2πLi0+ΔLi+εj/cνν185.965,186.035,
lossεj=maxi=19cos2πLi0+ΔLi+εj/cν.
CDOWSPεj=crossεj-maxi=19cos2πLi+εj/cvv185.965,186.035,
LDOWSPεj=lossεj-maxi=19cos2πLi+εj/cv.
RCROSS=crossζi¯=maxi=19cos2πLi0+ΔLi+ζi/cvν185.965,186.035.¯
RLOSS=lossζi¯=maxi=19cos2πLi0+ΔLi+ζi/cv.¯

Metrics