Abstract

The optical variations observed within ship wakes are largely due to the generation of copious amounts of air bubbles in the upper ocean, a fraction of which accumulate as foam at the surface, where they release scavenged surfactants. Field experiments were conducted to test previous theoretical predictions of the variations in optical properties that result from bubble injection in the surface ocean. Variations in remote-sensing reflectance and size distribution of bubbles within the ship-wake zone were determined in three different optical water types: the clear equatorial Pacific Ocean, moderately turbid coastal waters, and very turbid coastal waters, the latter two of which were offshore of New Jersey. Bubbles introduced by moving vessels increased the backscattering in all cases, which in turn enhanced the reflectance over the entire visible and infrared wave bands. The elevated reflectance had different spectral characteristics in the three locations. The color of ship wakes appears greener in the open ocean, whereas little change in color was observed in near-coastal turbid waters, consistent with predictions. Colorless themselves, bubbles increase the reflected radiance and change the color of the ocean in a way that depends on the spectral backscattering and absorption of the undisturbed background waters. For remote observation from aircraft or satellite, the foam and added surfactants further enhance the reflectance to a degree dependent on the illumination and the viewing geometry.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Debnath, Nonlinear Water Waves (Academic, Boston, 1994), p. 544.
  2. J. D. Lyden, R. R. Hammond, D. R. Lyzenga, R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93(C10), 12293–12303 (1988).
    [CrossRef]
  3. R. D. Peltzer, O. M. Griffin, W. R. Barger, J. A. C. Kaiser, “High-resolution measurement of surface-active film redistribution in ship wakes,” J. Geophys. Res. 97(C4), 5231–5252 (1992).
    [CrossRef]
  4. A. M. Reed, R. F. Beck, O. M. Griffin, R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990).
  5. J. D. McGlynn, S. R. Stewart, D. J. Witte, “Advances in sensing and detection of thermal infrared ship wakes,” presented at Oceans’ 90: Engineering in the Ocean Environment, Washington D.C., 1990, 24–26 September 1990.
    [CrossRef]
  6. W. H. Munk, P. Scully-Power, F. Zachariasen, “Ships from space,” Proc. R. Soc. London Ser. A 412, 231–254 (1987).
    [CrossRef]
  7. X. Zhang, M. R. Lewis, B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998).
    [CrossRef]
  8. D. Stramski, “Gas microbubbles: an assessment of their significance to light scattering in quiescent seas,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 704–710 (1994).
    [CrossRef]
  9. D. Stramski, J. Tegowski, “Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field,” J. Geophys. Res. 106(C12), 31345–31360 (2001).
    [CrossRef]
  10. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  11. J. T. Tate, L. J. Spitzer, eds., Physics of Sound in the Sea: Summary Technical Report of Division 6 (U.S. Government Printing Office, Washington D.C., 1946), p. 566.
  12. M. V. Trevorrow, S. Vagle, D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994).
    [CrossRef]
  13. L. Shen, C. Zhang, D. K. P. Yue, “Free-surface turbulent wake behind towed ship models: Experimental measurements, stability analyses and direct numerical simulations,” J. Fluid Mech. 469, 89–120 (2002).
    [CrossRef]
  14. A. B. Ezerskii, B. M. Sandler, D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).
  15. A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
    [CrossRef]
  16. A. Morel, J. L. Mueller, “Normalized water-leaving radiance and remote sensing reflectance: Bidirectional reflectance and other factors,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, J. L. Mueller, G. S. Fargion, eds. (National Aeronautics and Space Administration, Greenbelt, Md., 2002), Revision 3, Vol. 2, p. 308.
  17. H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
    [CrossRef] [PubMed]
  18. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: Its dependence on sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
    [CrossRef] [PubMed]
  19. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
    [CrossRef] [PubMed]
  20. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  21. X. Zhang, “Influence of bubbles on the water-leaving reflectance,” Ph.D. thesis (Dalhousie University, Halifax, Nova Scotia, Canada, 2001).
  22. “LEO-15 Longterm Ecosystem Observatory” (Rutgers University, New Brunswick, N.J., 2001), retrieved March2001, http://marine.rutgers.edu/mrs/LEO15.html .
  23. R. W. Austin, T. L. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–256.
    [CrossRef]
  24. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
    [CrossRef]
  25. B. D. Johnson, R. C. Cooke, “Bubble populations and spectra in coastal waters. A photographic approach,” J. Geophys. Res. 84, 3761–3766 (1979).
    [CrossRef]
  26. A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
    [CrossRef]
  27. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
    [CrossRef]
  28. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994), p. 592.
  29. A. Morel, “Light and marine photosynthesis: A spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
    [CrossRef]
  30. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review, Vol. 4 of Springer-Verlag Lecture Notes on Coastal and Estuarine Studies Series (Springer-Verlag, New York, 1983), p. 114.
  31. T. J. Petzold, “Volume scattering function for selected ocean waters,” SIO Ref. 72–78 (Scripps Institute of Oceanography, La Jolla, Calif., 1972).
  32. M. R. Lewis, J. J. Cullen, T. Platt, “Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile,” J. Geophys. Res. 88, 2565–2570 (1983).
    [CrossRef]
  33. X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
    [CrossRef]
  34. C. Garrett, M. Li, D. M. Farmer, “The connection between bubble size spectra and energy dissipation rates in the upper ocean,” J. Phys. Oceanogr. 30, 2163–2171 (2000).
    [CrossRef]
  35. M. Y. Su, S. C. Ling, J. Cartmill, “Optical microbubble measurements in the North Sea,” in Sea Surface Sound, B. R. Kerman, ed. (Kluwer Academic, New York, 1988), pp. 211–223.
    [CrossRef]
  36. E. J. Terrill, W. K. Melville, D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
    [CrossRef]
  37. D. J. Bogucki, J. A. Domaradzki, D. Stramski, J. R. V. Zaneveld, “Comparison of near-forward light scattering on oceanic turbulence and particles,” Appl. Opt. 37, 4669–4677 (1998).
    [CrossRef]
  38. R. Frouin, M. Schwindling, P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
    [CrossRef]
  39. H. R. Gordon, “Sensitivity of radiative transfer to small-angle scattering in the ocean: quantitative assessment,” Appl. Opt. 32, 7505–7511 (1993).
    [CrossRef] [PubMed]
  40. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
    [CrossRef]
  41. M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
    [CrossRef]
  42. C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).
  43. C. H. Whitlock, D. S. Bartlett, E. A. Gurganus, “Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols,” Geophys. Res. Lett. 9, 719–722 (1982).
    [CrossRef]
  44. P. Koepke, “Effective reflectance of oceanic whitecaps,” Appl. Opt. 23, 1816–1824 (1984).
    [CrossRef] [PubMed]
  45. K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000).
    [CrossRef]
  46. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
    [CrossRef]

2002 (2)

L. Shen, C. Zhang, D. K. P. Yue, “Free-surface turbulent wake behind towed ship models: Experimental measurements, stability analyses and direct numerical simulations,” J. Fluid Mech. 469, 89–120 (2002).
[CrossRef]

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

2001 (3)

E. J. Terrill, W. K. Melville, D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

D. Stramski, J. Tegowski, “Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field,” J. Geophys. Res. 106(C12), 31345–31360 (2001).
[CrossRef]

A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

2000 (2)

C. Garrett, M. Li, D. M. Farmer, “The connection between bubble size spectra and energy dissipation rates in the upper ocean,” J. Phys. Oceanogr. 30, 2163–2171 (2000).
[CrossRef]

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000).
[CrossRef]

1999 (1)

1998 (3)

D. J. Bogucki, J. A. Domaradzki, D. Stramski, J. R. V. Zaneveld, “Comparison of near-forward light scattering on oceanic turbulence and particles,” Appl. Opt. 37, 4669–4677 (1998).
[CrossRef]

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

X. Zhang, M. R. Lewis, B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998).
[CrossRef]

1997 (1)

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[CrossRef]

1996 (1)

R. Frouin, M. Schwindling, P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[CrossRef]

1994 (2)

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[CrossRef]

M. V. Trevorrow, S. Vagle, D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994).
[CrossRef]

1993 (2)

1992 (1)

R. D. Peltzer, O. M. Griffin, W. R. Barger, J. A. C. Kaiser, “High-resolution measurement of surface-active film redistribution in ship wakes,” J. Geophys. Res. 97(C4), 5231–5252 (1992).
[CrossRef]

1991 (2)

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: Its dependence on sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

A. Morel, “Light and marine photosynthesis: A spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
[CrossRef]

1990 (1)

A. M. Reed, R. F. Beck, O. M. Griffin, R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990).

1989 (1)

A. B. Ezerskii, B. M. Sandler, D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).

1988 (2)

J. D. Lyden, R. R. Hammond, D. R. Lyzenga, R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93(C10), 12293–12303 (1988).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
[CrossRef]

1987 (1)

W. H. Munk, P. Scully-Power, F. Zachariasen, “Ships from space,” Proc. R. Soc. London Ser. A 412, 231–254 (1987).
[CrossRef]

1984 (1)

1983 (1)

M. R. Lewis, J. J. Cullen, T. Platt, “Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile,” J. Geophys. Res. 88, 2565–2570 (1983).
[CrossRef]

1982 (1)

C. H. Whitlock, D. S. Bartlett, E. A. Gurganus, “Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols,” Geophys. Res. Lett. 9, 719–722 (1982).
[CrossRef]

1980 (1)

M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
[CrossRef]

1979 (1)

B. D. Johnson, R. C. Cooke, “Bubble populations and spectra in coastal waters. A photographic approach,” J. Geophys. Res. 84, 3761–3766 (1979).
[CrossRef]

1977 (1)

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

1975 (1)

1954 (1)

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

Acharya, P. K.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Adler-Golden, S. M.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Anderson, G. P.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Austin, R. W.

R. W. Austin, T. L. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–256.
[CrossRef]

Barger, W. R.

R. D. Peltzer, O. M. Griffin, W. R. Barger, J. A. C. Kaiser, “High-resolution measurement of surface-active film redistribution in ship wakes,” J. Geophys. Res. 97(C4), 5231–5252 (1992).
[CrossRef]

Bartlett, D. S.

C. H. Whitlock, D. S. Bartlett, E. A. Gurganus, “Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols,” Geophys. Res. Lett. 9, 719–722 (1982).
[CrossRef]

Beck, R. F.

A. M. Reed, R. F. Beck, O. M. Griffin, R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990).

Berk, A.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Bernstein, L. S.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Bogucki, D. J.

Brown, O. B.

Cartmill, J.

M. Y. Su, S. C. Ling, J. Cartmill, “Optical microbubble measurements in the North Sea,” in Sea Surface Sound, B. R. Kerman, ed. (Kluwer Academic, New York, 1988), pp. 211–223.
[CrossRef]

Chetwynd, J. H.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Cooke, R. C.

B. D. Johnson, R. C. Cooke, “Bubble populations and spectra in coastal waters. A photographic approach,” J. Geophys. Res. 84, 3761–3766 (1979).
[CrossRef]

Cox, C.

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

Cullen, J. J.

M. R. Lewis, J. J. Cullen, T. Platt, “Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile,” J. Geophys. Res. 88, 2565–2570 (1983).
[CrossRef]

Debnath, L.

L. Debnath, Nonlinear Water Waves (Academic, Boston, 1994), p. 544.

Deschamps, P. Y.

M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
[CrossRef]

Deschamps, P.-Y.

R. Frouin, M. Schwindling, P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[CrossRef]

Domaradzki, J. A.

Ezerskii, A. B.

A. B. Ezerskii, B. M. Sandler, D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).

Farmer, D. M.

C. Garrett, M. Li, D. M. Farmer, “The connection between bubble size spectra and energy dissipation rates in the upper ocean,” J. Phys. Oceanogr. 30, 2163–2171 (2000).
[CrossRef]

M. V. Trevorrow, S. Vagle, D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994).
[CrossRef]

Frouin, R.

R. Frouin, M. Schwindling, P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[CrossRef]

Garrett, C.

C. Garrett, M. Li, D. M. Farmer, “The connection between bubble size spectra and energy dissipation rates in the upper ocean,” J. Phys. Oceanogr. 30, 2163–2171 (2000).
[CrossRef]

Gentili, B.

Gordon, H. R.

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000).
[CrossRef]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[CrossRef]

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[CrossRef]

H. R. Gordon, “Sensitivity of radiative transfer to small-angle scattering in the ocean: quantitative assessment,” Appl. Opt. 32, 7505–7511 (1993).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef] [PubMed]

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review, Vol. 4 of Springer-Verlag Lecture Notes on Coastal and Estuarine Studies Series (Springer-Verlag, New York, 1983), p. 114.

Griffin, O. M.

R. D. Peltzer, O. M. Griffin, W. R. Barger, J. A. C. Kaiser, “High-resolution measurement of surface-active film redistribution in ship wakes,” J. Geophys. Res. 97(C4), 5231–5252 (1992).
[CrossRef]

A. M. Reed, R. F. Beck, O. M. Griffin, R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990).

Gurganus, E. A.

C. H. Whitlock, D. S. Bartlett, E. A. Gurganus, “Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols,” Geophys. Res. Lett. 9, 719–722 (1982).
[CrossRef]

Hammond, R. R.

J. D. Lyden, R. R. Hammond, D. R. Lyzenga, R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93(C10), 12293–12303 (1988).
[CrossRef]

Jacobs, M. M.

Johnson, B. D.

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

X. Zhang, M. R. Lewis, B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998).
[CrossRef]

B. D. Johnson, R. C. Cooke, “Bubble populations and spectra in coastal waters. A photographic approach,” J. Geophys. Res. 84, 3761–3766 (1979).
[CrossRef]

Kaiser, J. A. C.

R. D. Peltzer, O. M. Griffin, W. R. Barger, J. A. C. Kaiser, “High-resolution measurement of surface-active film redistribution in ship wakes,” J. Geophys. Res. 97(C4), 5231–5252 (1992).
[CrossRef]

Koepke, P.

Korotaev, G.

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Lee, M.

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Lewis, M. R.

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

X. Zhang, M. R. Lewis, B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998).
[CrossRef]

M. R. Lewis, J. J. Cullen, T. Platt, “Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile,” J. Geophys. Res. 88, 2565–2570 (1983).
[CrossRef]

Li, M.

C. Garrett, M. Li, D. M. Farmer, “The connection between bubble size spectra and energy dissipation rates in the upper ocean,” J. Phys. Oceanogr. 30, 2163–2171 (2000).
[CrossRef]

Ling, S. C.

M. Y. Su, S. C. Ling, J. Cartmill, “Optical microbubble measurements in the North Sea,” in Sea Surface Sound, B. R. Kerman, ed. (Kluwer Academic, New York, 1988), pp. 211–223.
[CrossRef]

Lyden, J. D.

J. D. Lyden, R. R. Hammond, D. R. Lyzenga, R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93(C10), 12293–12303 (1988).
[CrossRef]

Lyzenga, D. R.

J. D. Lyden, R. R. Hammond, D. R. Lyzenga, R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93(C10), 12293–12303 (1988).
[CrossRef]

Maritorena, S.

A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

McGlynn, J. D.

J. D. McGlynn, S. R. Stewart, D. J. Witte, “Advances in sensing and detection of thermal infrared ship wakes,” presented at Oceans’ 90: Engineering in the Ocean Environment, Washington D.C., 1990, 24–26 September 1990.
[CrossRef]

Melville, W. K.

E. J. Terrill, W. K. Melville, D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

Mobley, C. D.

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[CrossRef]

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994), p. 592.

Moore, K. D.

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000).
[CrossRef]

Morel, A.

A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: Its dependence on sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

A. Morel, “Light and marine photosynthesis: A spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

A. Morel, J. L. Mueller, “Normalized water-leaving radiance and remote sensing reflectance: Bidirectional reflectance and other factors,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, J. L. Mueller, G. S. Fargion, eds. (National Aeronautics and Space Administration, Greenbelt, Md., 2002), Revision 3, Vol. 2, p. 308.

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review, Vol. 4 of Springer-Verlag Lecture Notes on Coastal and Estuarine Studies Series (Springer-Verlag, New York, 1983), p. 114.

Mueller, J. L.

A. Morel, J. L. Mueller, “Normalized water-leaving radiance and remote sensing reflectance: Bidirectional reflectance and other factors,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, J. L. Mueller, G. S. Fargion, eds. (National Aeronautics and Space Administration, Greenbelt, Md., 2002), Revision 3, Vol. 2, p. 308.

Munk, W.

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

Munk, W. H.

W. H. Munk, P. Scully-Power, F. Zachariasen, “Ships from space,” Proc. R. Soc. London Ser. A 412, 231–254 (1987).
[CrossRef]

Peltzer, R. D.

R. D. Peltzer, O. M. Griffin, W. R. Barger, J. A. C. Kaiser, “High-resolution measurement of surface-active film redistribution in ship wakes,” J. Geophys. Res. 97(C4), 5231–5252 (1992).
[CrossRef]

A. M. Reed, R. F. Beck, O. M. Griffin, R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990).

Petzold, T. J.

T. J. Petzold, “Volume scattering function for selected ocean waters,” SIO Ref. 72–78 (Scripps Institute of Oceanography, La Jolla, Calif., 1972).

Petzold, T. L.

R. W. Austin, T. L. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–256.
[CrossRef]

Platt, T.

M. R. Lewis, J. J. Cullen, T. Platt, “Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile,” J. Geophys. Res. 88, 2565–2570 (1983).
[CrossRef]

Prieur, L.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Reed, A. M.

A. M. Reed, R. F. Beck, O. M. Griffin, R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990).

Robertson, D. C.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Sandler, B. M.

A. B. Ezerskii, B. M. Sandler, D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).

Schwindling, M.

R. Frouin, M. Schwindling, P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[CrossRef]

Scully-Power, P.

W. H. Munk, P. Scully-Power, F. Zachariasen, “Ships from space,” Proc. R. Soc. London Ser. A 412, 231–254 (1987).
[CrossRef]

Selivanovskii, D. A.

A. B. Ezerskii, B. M. Sandler, D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).

Shen, L.

L. Shen, C. Zhang, D. K. P. Yue, “Free-surface turbulent wake behind towed ship models: Experimental measurements, stability analyses and direct numerical simulations,” J. Fluid Mech. 469, 89–120 (2002).
[CrossRef]

Shuchman, R. A.

J. D. Lyden, R. R. Hammond, D. R. Lyzenga, R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93(C10), 12293–12303 (1988).
[CrossRef]

Stewart, S. R.

J. D. McGlynn, S. R. Stewart, D. J. Witte, “Advances in sensing and detection of thermal infrared ship wakes,” presented at Oceans’ 90: Engineering in the Ocean Environment, Washington D.C., 1990, 24–26 September 1990.
[CrossRef]

Stramski, D.

D. Stramski, J. Tegowski, “Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field,” J. Geophys. Res. 106(C12), 31345–31360 (2001).
[CrossRef]

E. J. Terrill, W. K. Melville, D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

D. J. Bogucki, J. A. Domaradzki, D. Stramski, J. R. V. Zaneveld, “Comparison of near-forward light scattering on oceanic turbulence and particles,” Appl. Opt. 37, 4669–4677 (1998).
[CrossRef]

D. Stramski, “Gas microbubbles: an assessment of their significance to light scattering in quiescent seas,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 704–710 (1994).
[CrossRef]

Su, M. Y.

M. Y. Su, S. C. Ling, J. Cartmill, “Optical microbubble measurements in the North Sea,” in Sea Surface Sound, B. R. Kerman, ed. (Kluwer Academic, New York, 1988), pp. 211–223.
[CrossRef]

Tanré, D.

M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
[CrossRef]

Tegowski, J.

D. Stramski, J. Tegowski, “Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field,” J. Geophys. Res. 106(C12), 31345–31360 (2001).
[CrossRef]

Terrill, E. J.

E. J. Terrill, W. K. Melville, D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

Trevorrow, M. V.

M. V. Trevorrow, S. Vagle, D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994).
[CrossRef]

Vagle, S.

M. V. Trevorrow, S. Vagle, D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994).
[CrossRef]

Viollier, M.

M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
[CrossRef]

Voss, K. J.

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000).
[CrossRef]

Wang, M.

Whitlock, C. H.

C. H. Whitlock, D. S. Bartlett, E. A. Gurganus, “Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols,” Geophys. Res. Lett. 9, 719–722 (1982).
[CrossRef]

Witte, D. J.

J. D. McGlynn, S. R. Stewart, D. J. Witte, “Advances in sensing and detection of thermal infrared ship wakes,” presented at Oceans’ 90: Engineering in the Ocean Environment, Washington D.C., 1990, 24–26 September 1990.
[CrossRef]

Yue, D. K. P.

L. Shen, C. Zhang, D. K. P. Yue, “Free-surface turbulent wake behind towed ship models: Experimental measurements, stability analyses and direct numerical simulations,” J. Fluid Mech. 469, 89–120 (2002).
[CrossRef]

Zachariasen, F.

W. H. Munk, P. Scully-Power, F. Zachariasen, “Ships from space,” Proc. R. Soc. London Ser. A 412, 231–254 (1987).
[CrossRef]

Zaneveld, J. R. V.

Zhang, C.

L. Shen, C. Zhang, D. K. P. Yue, “Free-surface turbulent wake behind towed ship models: Experimental measurements, stability analyses and direct numerical simulations,” J. Fluid Mech. 469, 89–120 (2002).
[CrossRef]

Zhang, X.

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

X. Zhang, M. R. Lewis, B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998).
[CrossRef]

X. Zhang, “Influence of bubbles on the water-leaving reflectance,” Ph.D. thesis (Dalhousie University, Halifax, Nova Scotia, Canada, 2001).

Appl. Opt. (9)

X. Zhang, M. R. Lewis, B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998).
[CrossRef]

H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: Its dependence on sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

H. R. Gordon, “Sensitivity of radiative transfer to small-angle scattering in the ocean: quantitative assessment,” Appl. Opt. 32, 7505–7511 (1993).
[CrossRef] [PubMed]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[CrossRef]

D. J. Bogucki, J. A. Domaradzki, D. Stramski, J. R. V. Zaneveld, “Comparison of near-forward light scattering on oceanic turbulence and particles,” Appl. Opt. 37, 4669–4677 (1998).
[CrossRef]

P. Koepke, “Effective reflectance of oceanic whitecaps,” Appl. Opt. 23, 1816–1824 (1984).
[CrossRef] [PubMed]

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[CrossRef]

Boundary-Layer Meteorol. (1)

M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
[CrossRef]

Geophys. Res. Lett. (1)

C. H. Whitlock, D. S. Bartlett, E. A. Gurganus, “Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols,” Geophys. Res. Lett. 9, 719–722 (1982).
[CrossRef]

J. Acoust. Soc. Am. (1)

M. V. Trevorrow, S. Vagle, D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994).
[CrossRef]

J. Fluid Mech. (1)

L. Shen, C. Zhang, D. K. P. Yue, “Free-surface turbulent wake behind towed ship models: Experimental measurements, stability analyses and direct numerical simulations,” J. Fluid Mech. 469, 89–120 (2002).
[CrossRef]

J. Geophys. Res. (11)

D. Stramski, J. Tegowski, “Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field,” J. Geophys. Res. 106(C12), 31345–31360 (2001).
[CrossRef]

J. D. Lyden, R. R. Hammond, D. R. Lyzenga, R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93(C10), 12293–12303 (1988).
[CrossRef]

R. D. Peltzer, O. M. Griffin, W. R. Barger, J. A. C. Kaiser, “High-resolution measurement of surface-active film redistribution in ship wakes,” J. Geophys. Res. 97(C4), 5231–5252 (1992).
[CrossRef]

M. R. Lewis, J. J. Cullen, T. Platt, “Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile,” J. Geophys. Res. 88, 2565–2570 (1983).
[CrossRef]

A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
[CrossRef]

B. D. Johnson, R. C. Cooke, “Bubble populations and spectra in coastal waters. A photographic approach,” J. Geophys. Res. 84, 3761–3766 (1979).
[CrossRef]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[CrossRef]

E. J. Terrill, W. K. Melville, D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

R. Frouin, M. Schwindling, P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[CrossRef]

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000).
[CrossRef]

J. Mar. Res. (1)

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

J. Phys. Oceanogr. (1)

C. Garrett, M. Li, D. M. Farmer, “The connection between bubble size spectra and energy dissipation rates in the upper ocean,” J. Phys. Oceanogr. 30, 2163–2171 (2000).
[CrossRef]

Limnol. Oceanogr. (2)

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

W. H. Munk, P. Scully-Power, F. Zachariasen, “Ships from space,” Proc. R. Soc. London Ser. A 412, 231–254 (1987).
[CrossRef]

Prog. Oceanogr. (1)

A. Morel, “Light and marine photosynthesis: A spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
[CrossRef]

Remote Sens. Environ. (1)

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Soc. Nav. Arch. Mar. Eng. Trans. (1)

A. M. Reed, R. F. Beck, O. M. Griffin, R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990).

Sov. Phys. Acoust. (1)

A. B. Ezerskii, B. M. Sandler, D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).

Other (13)

J. T. Tate, L. J. Spitzer, eds., Physics of Sound in the Sea: Summary Technical Report of Division 6 (U.S. Government Printing Office, Washington D.C., 1946), p. 566.

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.

X. Zhang, “Influence of bubbles on the water-leaving reflectance,” Ph.D. thesis (Dalhousie University, Halifax, Nova Scotia, Canada, 2001).

“LEO-15 Longterm Ecosystem Observatory” (Rutgers University, New Brunswick, N.J., 2001), retrieved March2001, http://marine.rutgers.edu/mrs/LEO15.html .

R. W. Austin, T. L. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–256.
[CrossRef]

J. D. McGlynn, S. R. Stewart, D. J. Witte, “Advances in sensing and detection of thermal infrared ship wakes,” presented at Oceans’ 90: Engineering in the Ocean Environment, Washington D.C., 1990, 24–26 September 1990.
[CrossRef]

L. Debnath, Nonlinear Water Waves (Academic, Boston, 1994), p. 544.

D. Stramski, “Gas microbubbles: an assessment of their significance to light scattering in quiescent seas,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 704–710 (1994).
[CrossRef]

A. Morel, J. L. Mueller, “Normalized water-leaving radiance and remote sensing reflectance: Bidirectional reflectance and other factors,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, J. L. Mueller, G. S. Fargion, eds. (National Aeronautics and Space Administration, Greenbelt, Md., 2002), Revision 3, Vol. 2, p. 308.

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review, Vol. 4 of Springer-Verlag Lecture Notes on Coastal and Estuarine Studies Series (Springer-Verlag, New York, 1983), p. 114.

T. J. Petzold, “Volume scattering function for selected ocean waters,” SIO Ref. 72–78 (Scripps Institute of Oceanography, La Jolla, Calif., 1972).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994), p. 592.

M. Y. Su, S. C. Ling, J. Cartmill, “Optical microbubble measurements in the North Sea,” in Sea Surface Sound, B. R. Kerman, ed. (Kluwer Academic, New York, 1988), pp. 211–223.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experiment sites for the Coast Wake. The triangle indicates the location for the Near Coast Wake on 28 July 2000, and the star for the Far Coast Wake on 31 July 2001, when the hyperspectral sensor PHILLS-2 was imaging the area surrounded by dotted lines. The inset displays a portion of the imagery showing the ship and wakes in true color composite. The solid line is the ship track for R/V Endeavor, which took surface measurements on 30 July 2001.

Fig. 2
Fig. 2

(a) Comparison of measured reflectance between the inside (curve with stars) and the outside (plain curve) of the wake zone at three stations along the equator during the Ocean Wake experiment [from West to East, 163.60 E (solid curve), 176.30 W (dashed curve), and 170.19 W (dotted curve)]. The inset is an enlarged view of the measurements between 700 and 800 nm. (b) Shape of the measured reflectance spectra at the St. 170.19 W normalized by the corresponding integral over the waveband 400–800 nm.

Fig. 3
Fig. 3

Comparison of the increased reflectance between the measurements and the model simulations for (a) St. 170.19 W of the Ocean Wake (OW) and the Near Coast Wake experiments and (b) for the Far Coast Wake (FCW) at 500 m behind the ship.

Fig. 4
Fig. 4

Same as Fig. 2 except for the Near Coast Wake experiment. In both Figs. 3(a) and 3(b), the solid curve is for measurement inside the wake, and the dotted curves for measurements taken outside.

Fig. 5
Fig. 5

Size distributions of ship wake bubbles determined by the underwater camera during the Near Coast Wake experiment, and their variation with time. N0 in the legend denotes the total number density of bubbles that could be resolved by the camera.

Fig. 6
Fig. 6

(a) Hyperspectral reflectance derived from the airborne sensor PHILLS-2 for the ship, background water, and wake water. From top to bottom, the reflectance within the ship wakes (dotted curve) was sampled at an increasing distance away from the ship. (b) The increased reflectance of ship wakes against the background water. The numbers shown are the distance from the ship at which the reflectance spectrum is estimated.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Rλ=EuλEdλ=fλbbλaλ,
Euλ=QλLuλ,
Rrsλ=G fλQλbbλaλ,
Rrs,wλ=G fwλQwλbbλ+bb,bubaλ,
ΔRrs750λ800=Rrs,w-Rrs=2.8×10-11N0,
ΔRrs=WRrs,f-Rrs+1-WRrs,w-RrsWRrs,f+Rrs,w-Rrs,

Metrics