Abstract

Wind flows over the 8.2-m Subaru Telescope at Mauna Kea in Hawaii were analyzed with a correlation method. Three or four wind flows were detected from our measurements. Spatial and temporal resolution of the wind-flow analysis across the 8.2 m pupil were investigated experimentally. A three-dimensional spatiotemporal-frequency analysis was also applied to the wind-flow data.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Roddier, “The effect of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. XIX, pp. 281–376.
    [CrossRef]
  2. A. Rocca, F. Roddier, J. Vernin, “Detection of atmospheric turbulent layers by spatiotemporal and spatioangular correlation measurements of stellar-light scintillation,” J. Opt. Soc. Am. 64, 1000–1004 (1974).
    [CrossRef]
  3. M. Azouit, J. Vernin, “Remote investigation of tropospheric turbulence by two-dimensional analysis of stellar scintillation,” J. Atmos. Sci. 37, 1550–1557 (1980).
    [CrossRef]
  4. J. L. Caccia, M. Azouit, J. Vernin, “Wind and CN2 profiling by single-star scintillation analysis,” Appl. Opt. 26, 1288–1294 (1987).
    [CrossRef] [PubMed]
  5. R. Li, M. Takabe, T. Aruga, “A new data acquisition system for measuring the movement of atmospheric speckle patterns,” Rev. Sci. Instrum. 70, 2136–2139 (1999).
    [CrossRef]
  6. S. Oya, M. Takabe, T. Aruga, “Application of an exclusively binarized correlation-calculation method to wind velocity measurement by use of stellar scintillation patterns,” Appl. Opt. 40, 4041–4049 (2001).
    [CrossRef]
  7. J. Vernin, F. Roddier, “Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. Evidence for a multiplayer structure of the air turbulence in the upper troposphere,” J. Opt. Soc. Am. 63, 270–273 (1973).
    [CrossRef]
  8. A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
    [CrossRef] [PubMed]
  9. D. J. Heeger, “Model for the extraction of image flow,” J. Opt. Soc. Am. A 4, 1455–1471 (1987).
    [CrossRef] [PubMed]
  10. T. Usuda, K. Omata, M. Yutani, Y. Torii, Y. Mikami, T. Nishino, T. Noguchi, T. Nishimura, S. Sawadathe Subaru Project team, “CIAX: Cassegrain Instrument Auto eXchanger for the Subaru Telescope,” in Advanced Telescope and Instrumentation Control Software, H. Lewis, ed., Proc. SPIE4009, 141–150 (2000).
    [CrossRef]
  11. N. Baba, K. Mutoh, “Measurement of telescope aberrations through atmospheric turbulence by use of phase diversity,” Appl. Opt. 40, 544–552 (2001).
    [CrossRef]
  12. N. Baba, S. Kuwamura, Y. Norimoto, “Stellar speckle camera for spectroscopy,” Appl. Opt. 33, 6662–6666 (1994).
    [CrossRef] [PubMed]
  13. R. C. Flicker, F. J. Rigaut, “Hokupa’a anisoplanatism and Mauna Kea turbulence characterization,” Publ. Astron. Soc. Pac. 114, 1006–1015 (2002).
    [CrossRef]

2002 (1)

R. C. Flicker, F. J. Rigaut, “Hokupa’a anisoplanatism and Mauna Kea turbulence characterization,” Publ. Astron. Soc. Pac. 114, 1006–1015 (2002).
[CrossRef]

2001 (2)

1999 (1)

R. Li, M. Takabe, T. Aruga, “A new data acquisition system for measuring the movement of atmospheric speckle patterns,” Rev. Sci. Instrum. 70, 2136–2139 (1999).
[CrossRef]

1994 (1)

1987 (2)

1985 (1)

1980 (1)

M. Azouit, J. Vernin, “Remote investigation of tropospheric turbulence by two-dimensional analysis of stellar scintillation,” J. Atmos. Sci. 37, 1550–1557 (1980).
[CrossRef]

1974 (1)

1973 (1)

Ahumada, A. J.

Aruga, T.

S. Oya, M. Takabe, T. Aruga, “Application of an exclusively binarized correlation-calculation method to wind velocity measurement by use of stellar scintillation patterns,” Appl. Opt. 40, 4041–4049 (2001).
[CrossRef]

R. Li, M. Takabe, T. Aruga, “A new data acquisition system for measuring the movement of atmospheric speckle patterns,” Rev. Sci. Instrum. 70, 2136–2139 (1999).
[CrossRef]

Azouit, M.

J. L. Caccia, M. Azouit, J. Vernin, “Wind and CN2 profiling by single-star scintillation analysis,” Appl. Opt. 26, 1288–1294 (1987).
[CrossRef] [PubMed]

M. Azouit, J. Vernin, “Remote investigation of tropospheric turbulence by two-dimensional analysis of stellar scintillation,” J. Atmos. Sci. 37, 1550–1557 (1980).
[CrossRef]

Baba, N.

Caccia, J. L.

Flicker, R. C.

R. C. Flicker, F. J. Rigaut, “Hokupa’a anisoplanatism and Mauna Kea turbulence characterization,” Publ. Astron. Soc. Pac. 114, 1006–1015 (2002).
[CrossRef]

Heeger, D. J.

Kuwamura, S.

Li, R.

R. Li, M. Takabe, T. Aruga, “A new data acquisition system for measuring the movement of atmospheric speckle patterns,” Rev. Sci. Instrum. 70, 2136–2139 (1999).
[CrossRef]

Mikami, Y.

T. Usuda, K. Omata, M. Yutani, Y. Torii, Y. Mikami, T. Nishino, T. Noguchi, T. Nishimura, S. Sawadathe Subaru Project team, “CIAX: Cassegrain Instrument Auto eXchanger for the Subaru Telescope,” in Advanced Telescope and Instrumentation Control Software, H. Lewis, ed., Proc. SPIE4009, 141–150 (2000).
[CrossRef]

Mutoh, K.

Nishimura, T.

T. Usuda, K. Omata, M. Yutani, Y. Torii, Y. Mikami, T. Nishino, T. Noguchi, T. Nishimura, S. Sawadathe Subaru Project team, “CIAX: Cassegrain Instrument Auto eXchanger for the Subaru Telescope,” in Advanced Telescope and Instrumentation Control Software, H. Lewis, ed., Proc. SPIE4009, 141–150 (2000).
[CrossRef]

Nishino, T.

T. Usuda, K. Omata, M. Yutani, Y. Torii, Y. Mikami, T. Nishino, T. Noguchi, T. Nishimura, S. Sawadathe Subaru Project team, “CIAX: Cassegrain Instrument Auto eXchanger for the Subaru Telescope,” in Advanced Telescope and Instrumentation Control Software, H. Lewis, ed., Proc. SPIE4009, 141–150 (2000).
[CrossRef]

Noguchi, T.

T. Usuda, K. Omata, M. Yutani, Y. Torii, Y. Mikami, T. Nishino, T. Noguchi, T. Nishimura, S. Sawadathe Subaru Project team, “CIAX: Cassegrain Instrument Auto eXchanger for the Subaru Telescope,” in Advanced Telescope and Instrumentation Control Software, H. Lewis, ed., Proc. SPIE4009, 141–150 (2000).
[CrossRef]

Norimoto, Y.

Omata, K.

T. Usuda, K. Omata, M. Yutani, Y. Torii, Y. Mikami, T. Nishino, T. Noguchi, T. Nishimura, S. Sawadathe Subaru Project team, “CIAX: Cassegrain Instrument Auto eXchanger for the Subaru Telescope,” in Advanced Telescope and Instrumentation Control Software, H. Lewis, ed., Proc. SPIE4009, 141–150 (2000).
[CrossRef]

Oya, S.

Rigaut, F. J.

R. C. Flicker, F. J. Rigaut, “Hokupa’a anisoplanatism and Mauna Kea turbulence characterization,” Publ. Astron. Soc. Pac. 114, 1006–1015 (2002).
[CrossRef]

Rocca, A.

Roddier, F.

Sawada, S.

T. Usuda, K. Omata, M. Yutani, Y. Torii, Y. Mikami, T. Nishino, T. Noguchi, T. Nishimura, S. Sawadathe Subaru Project team, “CIAX: Cassegrain Instrument Auto eXchanger for the Subaru Telescope,” in Advanced Telescope and Instrumentation Control Software, H. Lewis, ed., Proc. SPIE4009, 141–150 (2000).
[CrossRef]

Takabe, M.

S. Oya, M. Takabe, T. Aruga, “Application of an exclusively binarized correlation-calculation method to wind velocity measurement by use of stellar scintillation patterns,” Appl. Opt. 40, 4041–4049 (2001).
[CrossRef]

R. Li, M. Takabe, T. Aruga, “A new data acquisition system for measuring the movement of atmospheric speckle patterns,” Rev. Sci. Instrum. 70, 2136–2139 (1999).
[CrossRef]

Torii, Y.

T. Usuda, K. Omata, M. Yutani, Y. Torii, Y. Mikami, T. Nishino, T. Noguchi, T. Nishimura, S. Sawadathe Subaru Project team, “CIAX: Cassegrain Instrument Auto eXchanger for the Subaru Telescope,” in Advanced Telescope and Instrumentation Control Software, H. Lewis, ed., Proc. SPIE4009, 141–150 (2000).
[CrossRef]

Usuda, T.

T. Usuda, K. Omata, M. Yutani, Y. Torii, Y. Mikami, T. Nishino, T. Noguchi, T. Nishimura, S. Sawadathe Subaru Project team, “CIAX: Cassegrain Instrument Auto eXchanger for the Subaru Telescope,” in Advanced Telescope and Instrumentation Control Software, H. Lewis, ed., Proc. SPIE4009, 141–150 (2000).
[CrossRef]

Vernin, J.

Watson, A. B.

Yutani, M.

T. Usuda, K. Omata, M. Yutani, Y. Torii, Y. Mikami, T. Nishino, T. Noguchi, T. Nishimura, S. Sawadathe Subaru Project team, “CIAX: Cassegrain Instrument Auto eXchanger for the Subaru Telescope,” in Advanced Telescope and Instrumentation Control Software, H. Lewis, ed., Proc. SPIE4009, 141–150 (2000).
[CrossRef]

Appl. Opt. (4)

J. Atmos. Sci. (1)

M. Azouit, J. Vernin, “Remote investigation of tropospheric turbulence by two-dimensional analysis of stellar scintillation,” J. Atmos. Sci. 37, 1550–1557 (1980).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

Publ. Astron. Soc. Pac. (1)

R. C. Flicker, F. J. Rigaut, “Hokupa’a anisoplanatism and Mauna Kea turbulence characterization,” Publ. Astron. Soc. Pac. 114, 1006–1015 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Li, M. Takabe, T. Aruga, “A new data acquisition system for measuring the movement of atmospheric speckle patterns,” Rev. Sci. Instrum. 70, 2136–2139 (1999).
[CrossRef]

Other (2)

F. Roddier, “The effect of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. XIX, pp. 281–376.
[CrossRef]

T. Usuda, K. Omata, M. Yutani, Y. Torii, Y. Mikami, T. Nishino, T. Noguchi, T. Nishimura, S. Sawadathe Subaru Project team, “CIAX: Cassegrain Instrument Auto eXchanger for the Subaru Telescope,” in Advanced Telescope and Instrumentation Control Software, H. Lewis, ed., Proc. SPIE4009, 141–150 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Video frame of the pupil of the 8.2-m Subaru Telescope. The pupil is imaged in the 320 × 320 pixel region. Speckle patterns caused by atmospheric turbulence can be seen inside the pupil image.

Fig. 2
Fig. 2

(a) Effective long-exposure image of the pupil that constitutes the bias component of the field data. (b) One of the field data for the analysis; the bias component has been subtracted.

Fig. 3
Fig. 3

Degree of cross correlation displayed on gray-scale maps (left) and in contour plots (right). The arrows in the contour maps are drawn from the origin to the local peaks of the cross correlation. Data at (a) 13:28 and (b) 13:32 UT on 11 June 1999.

Fig. 4
Fig. 4

Gray-scale map of the degree of cross-correlation versus data-frame acquisition time for the data at (a) 13:28 and (b) 13:32 UT on 11 June 1999.

Fig. 5
Fig. 5

Degree of cross correlation calculated for a divided pupil image: (a) 2 × 2, (b) 3 × 3, (c) 4 × 4, and (d) 5 × 5 divisions. The result for the entire pupil is shown in Fig. 3(a).

Fig. 6
Fig. 6

3-D data cube and its Fourier spectra. When fixed patterns move with a constant velocity, their spatiotemporal frequency spectra are localized on a plane that passes through the origin.

Fig. 7
Fig. 7

Cross-sections of the 3-D power spectra at (a) ν = 3 Hz and (b) ν = 6 Hz. These figures indicate that the spectra are localized mostly on three planes.

Fig. 8
Fig. 8

Expected lines from the result of Fig. 4(a) on the cross sections of the 3-D power spectra at (a) ν = 3 Hz and (b) ν = 6 Hz. These lines match those in Fig. 7.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

fix, y, t=fˆix, y, t-fˆix, y, tt,i odd or even,
ρτξ, η=τTt=τT×x,yS fx, y, tfx-ξ, y-η, t-τx,yS |fx, y, t|2x,yS |fx-ξ, y-η, t-τ|21/2,
fx, y, t=j gjx, y, t=j gjx-Vjxt, y-Vjyt.
Fu, v, ν= fx, y, texp-i2πux+vy+νtdxdydt= j gjx-Vjxt, y-Vjytexp[-i2πux+vy+νt}dxdydt.
Xj=x-Vjxt, Yj=y-Vjyt,
Fu, v, ν=j gjXj, Yjexp-i2πuXj+vYjdXjdYj  exp-i2πuVjx+vYjy+νtdt
=j Gju, v×δuVjx+vVjy+ν,
uVjx+vVjy+ν=0.

Metrics