Abstract

We have devised an optical high-throughput nanosized beam-generating structure consisting of butted gratings with small numbers of periods. We analyzed the structure of these grating by the transverse resonance method. We then demonstrated that it is possible to achieve a beam spot of 45 nm × 60 nm (FWHM) with this structure for the optical heads used in ultrahigh-density recording, such as those used in laser-assisted magnetic recording storage.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, ed., Progress in Nano-electro-optics I (Springer-Verlag, Berlin, 2002).
  2. U. C. Fischer, “The tetrahedral tip as a probe for scanning near-field optical microscopy,” in Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 255–262.
    [CrossRef]
  3. R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
    [CrossRef]
  4. T. Matsumoto, T. Shimano, S. Hosaka, “An efficient probe with a planar metallic pattern for high-density near field optical memory,” in Technical Digest of 6th International Conference on Near Field Optics and Related Techniques (University of Twente, Enschede, The Netherlands, 2000), p. 55.
  5. T. Yatsui, K. Itsumi, M. Kourogi, M. Ohtsu, “Metallized pyramidal silicon probe with extremely high throughput and resolution capability for optical near-field technology,” Appl. Phys. Lett. 4, 2257–2259 (2002).
    [CrossRef]
  6. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
    [CrossRef] [PubMed]
  7. J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  8. A. Hessel, A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [CrossRef]
  9. P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
    [CrossRef]
  10. J. Yamakita, K. Rokushima, “Modal expansion method for dielectric gratings with rectangular grooves,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moire Phenomena 2, J. M. Lerner, ed., Proc. SPIE503, 239–243 (1984).
    [CrossRef]
  11. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  12. Poynting is a licensed commercial FDTD program from Fujitsu Limited, Japan.
  13. S.-T. Peng, A. A. Oliner, “Guidance and leakage properties of a class of open dielectric waveguides. 1. Mathematical formulations,” IEEE Trans. Microwave Theory Tech. MTT-29, 843–855 (1981).
    [CrossRef]
  14. H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
    [CrossRef]
  15. H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima, K. Ohta, “New magnetic recording method using laser assisted read/write technologies,” proceedings of Magneto-Optical Recording International Symposium J. Magn. Soc. Jpn. 23, Suppl. S1, 233–236 (1999).
  16. M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, D. Chen, “Characteristics of thermally assisted magnetic recording,” IEEE Trans. Magn. 37, 1244–1249 (2001).
    [CrossRef]
  17. J. M. Guerra, “Photon tunneling microscopy,” Appl. Opt. 29, 3741–3752 (1990).
    [CrossRef] [PubMed]
  18. S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [CrossRef]
  19. S. Hasegawa, N. Aoyama, A. Futamata, T. Uchiyama, “Optical tunneling effect calculation of a solid immersion lens for use in optical disk memory,” Appl. Opt. 38, 2297–2300 (1999).
    [CrossRef]
  20. T. Rausch, J. A. Bain, D. D. Stancil, T. E. Schlesinger, “Near field hybrid recording with a mode index waveguide lens,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 66–71 (2000).
    [CrossRef]
  21. J. Fujikata, T. Ishi, H. Yokota, R. J. Mizuno, K. Suzuki, M. Yanagisawa, K. Ohashi, “Near field optical head with a surface plasmon resonance structure,” in Technical Digest of Optics Japan (Optical Society of Japan, Tokyo, 2002), paper 3pA6 (in Japanese).

2002 (1)

T. Yatsui, K. Itsumi, M. Kourogi, M. Ohtsu, “Metallized pyramidal silicon probe with extremely high throughput and resolution capability for optical near-field technology,” Appl. Phys. Lett. 4, 2257–2259 (2002).
[CrossRef]

2001 (1)

M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, D. Chen, “Characteristics of thermally assisted magnetic recording,” IEEE Trans. Magn. 37, 1244–1249 (2001).
[CrossRef]

1999 (4)

H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
[CrossRef]

H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima, K. Ohta, “New magnetic recording method using laser assisted read/write technologies,” proceedings of Magneto-Optical Recording International Symposium J. Magn. Soc. Jpn. 23, Suppl. S1, 233–236 (1999).

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

S. Hasegawa, N. Aoyama, A. Futamata, T. Uchiyama, “Optical tunneling effect calculation of a solid immersion lens for use in optical disk memory,” Appl. Opt. 38, 2297–2300 (1999).
[CrossRef]

1997 (2)

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[CrossRef] [PubMed]

1990 (2)

J. M. Guerra, “Photon tunneling microscopy,” Appl. Opt. 29, 3741–3752 (1990).
[CrossRef] [PubMed]

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

1982 (1)

P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
[CrossRef]

1981 (1)

S.-T. Peng, A. A. Oliner, “Guidance and leakage properties of a class of open dielectric waveguides. 1. Mathematical formulations,” IEEE Trans. Microwave Theory Tech. MTT-29, 843–855 (1981).
[CrossRef]

1965 (1)

Alex, M.

M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, D. Chen, “Characteristics of thermally assisted magnetic recording,” IEEE Trans. Magn. 37, 1244–1249 (2001).
[CrossRef]

Aoyama, N.

Bain, J. A.

T. Rausch, J. A. Bain, D. D. Stancil, T. E. Schlesinger, “Near field hybrid recording with a mode index waveguide lens,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 66–71 (2000).
[CrossRef]

Chen, D.

M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, D. Chen, “Characteristics of thermally assisted magnetic recording,” IEEE Trans. Magn. 37, 1244–1249 (2001).
[CrossRef]

Deeman, N.

M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, D. Chen, “Characteristics of thermally assisted magnetic recording,” IEEE Trans. Magn. 37, 1244–1249 (2001).
[CrossRef]

Fischer, U. C.

U. C. Fischer, “The tetrahedral tip as a probe for scanning near-field optical microscopy,” in Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 255–262.
[CrossRef]

Fujikata, J.

J. Fujikata, T. Ishi, H. Yokota, R. J. Mizuno, K. Suzuki, M. Yanagisawa, K. Ohashi, “Near field optical head with a surface plasmon resonance structure,” in Technical Digest of Optics Japan (Optical Society of Japan, Tokyo, 2002), paper 3pA6 (in Japanese).

Futamata, A.

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Guerra, J. M.

Hasegawa, S.

Hessel, A.

Hosaka, S.

T. Matsumoto, T. Shimano, S. Hosaka, “An efficient probe with a planar metallic pattern for high-density near field optical memory,” in Technical Digest of 6th International Conference on Near Field Optics and Related Techniques (University of Twente, Enschede, The Netherlands, 2000), p. 55.

Ishi, T.

J. Fujikata, T. Ishi, H. Yokota, R. J. Mizuno, K. Suzuki, M. Yanagisawa, K. Ohashi, “Near field optical head with a surface plasmon resonance structure,” in Technical Digest of Optics Japan (Optical Society of Japan, Tokyo, 2002), paper 3pA6 (in Japanese).

Itsumi, K.

T. Yatsui, K. Itsumi, M. Kourogi, M. Ohtsu, “Metallized pyramidal silicon probe with extremely high throughput and resolution capability for optical near-field technology,” Appl. Phys. Lett. 4, 2257–2259 (2002).
[CrossRef]

Katayama, H.

H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima, K. Ohta, “New magnetic recording method using laser assisted read/write technologies,” proceedings of Magneto-Optical Recording International Symposium J. Magn. Soc. Jpn. 23, Suppl. S1, 233–236 (1999).

Kino, G. S.

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Kobayashi, T.

Kojima, K.

H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima, K. Ohta, “New magnetic recording method using laser assisted read/write technologies,” proceedings of Magneto-Optical Recording International Symposium J. Magn. Soc. Jpn. 23, Suppl. S1, 233–236 (1999).

Kourogi, M.

T. Yatsui, K. Itsumi, M. Kourogi, M. Ohtsu, “Metallized pyramidal silicon probe with extremely high throughput and resolution capability for optical near-field technology,” Appl. Phys. Lett. 4, 2257–2259 (2002).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Matsumoto, T.

T. Matsumoto, T. Shimano, S. Hosaka, “An efficient probe with a planar metallic pattern for high-density near field optical memory,” in Technical Digest of 6th International Conference on Near Field Optics and Related Techniques (University of Twente, Enschede, The Netherlands, 2000), p. 55.

McDaniel, T.

M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, D. Chen, “Characteristics of thermally assisted magnetic recording,” IEEE Trans. Magn. 37, 1244–1249 (2001).
[CrossRef]

Mizuno, R. J.

J. Fujikata, T. Ishi, H. Yokota, R. J. Mizuno, K. Suzuki, M. Yanagisawa, K. Ohashi, “Near field optical head with a surface plasmon resonance structure,” in Technical Digest of Optics Japan (Optical Society of Japan, Tokyo, 2002), paper 3pA6 (in Japanese).

Morimoto, A.

Nakajima, J.

H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima, K. Ohta, “New magnetic recording method using laser assisted read/write technologies,” proceedings of Magneto-Optical Recording International Symposium J. Magn. Soc. Jpn. 23, Suppl. S1, 233–236 (1999).

Nemoto, H.

H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
[CrossRef]

Ogimoto, Y.

H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima, K. Ohta, “New magnetic recording method using laser assisted read/write technologies,” proceedings of Magneto-Optical Recording International Symposium J. Magn. Soc. Jpn. 23, Suppl. S1, 233–236 (1999).

Ohashi, K.

J. Fujikata, T. Ishi, H. Yokota, R. J. Mizuno, K. Suzuki, M. Yanagisawa, K. Ohashi, “Near field optical head with a surface plasmon resonance structure,” in Technical Digest of Optics Japan (Optical Society of Japan, Tokyo, 2002), paper 3pA6 (in Japanese).

Ohta, K.

H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima, K. Ohta, “New magnetic recording method using laser assisted read/write technologies,” proceedings of Magneto-Optical Recording International Symposium J. Magn. Soc. Jpn. 23, Suppl. S1, 233–236 (1999).

Ohtsu, M.

T. Yatsui, K. Itsumi, M. Kourogi, M. Ohtsu, “Metallized pyramidal silicon probe with extremely high throughput and resolution capability for optical near-field technology,” Appl. Phys. Lett. 4, 2257–2259 (2002).
[CrossRef]

Oliner, A. A.

S.-T. Peng, A. A. Oliner, “Guidance and leakage properties of a class of open dielectric waveguides. 1. Mathematical formulations,” IEEE Trans. Microwave Theory Tech. MTT-29, 843–855 (1981).
[CrossRef]

A. Hessel, A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Peng, S.-T.

S.-T. Peng, A. A. Oliner, “Guidance and leakage properties of a class of open dielectric waveguides. 1. Mathematical formulations,” IEEE Trans. Microwave Theory Tech. MTT-29, 843–855 (1981).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Rausch, T.

T. Rausch, J. A. Bain, D. D. Stancil, T. E. Schlesinger, “Near field hybrid recording with a mode index waveguide lens,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 66–71 (2000).
[CrossRef]

Rokushima, K.

J. Yamakita, K. Rokushima, “Modal expansion method for dielectric gratings with rectangular grooves,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moire Phenomena 2, J. M. Lerner, ed., Proc. SPIE503, 239–243 (1984).
[CrossRef]

Saga, H.

H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
[CrossRef]

Sanda, P. N.

P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
[CrossRef]

Sawamura, S.

H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima, K. Ohta, “New magnetic recording method using laser assisted read/write technologies,” proceedings of Magneto-Optical Recording International Symposium J. Magn. Soc. Jpn. 23, Suppl. S1, 233–236 (1999).

Schlesinger, T. E.

T. Rausch, J. A. Bain, D. D. Stancil, T. E. Schlesinger, “Near field hybrid recording with a mode index waveguide lens,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 66–71 (2000).
[CrossRef]

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Sheng, P.

P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
[CrossRef]

Shimano, T.

T. Matsumoto, T. Shimano, S. Hosaka, “An efficient probe with a planar metallic pattern for high-density near field optical memory,” in Technical Digest of 6th International Conference on Near Field Optics and Related Techniques (University of Twente, Enschede, The Netherlands, 2000), p. 55.

Stancil, D. D.

T. Rausch, J. A. Bain, D. D. Stancil, T. E. Schlesinger, “Near field hybrid recording with a mode index waveguide lens,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 66–71 (2000).
[CrossRef]

Stepleman, R. S.

P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
[CrossRef]

Sukeda, H.

H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
[CrossRef]

Suzuki, K.

J. Fujikata, T. Ishi, H. Yokota, R. J. Mizuno, K. Suzuki, M. Yanagisawa, K. Ohashi, “Near field optical head with a surface plasmon resonance structure,” in Technical Digest of Optics Japan (Optical Society of Japan, Tokyo, 2002), paper 3pA6 (in Japanese).

Takahara, J.

Takahashi, M.

H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
[CrossRef]

Taki, H.

Tselikov, A.

M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, D. Chen, “Characteristics of thermally assisted magnetic recording,” IEEE Trans. Magn. 37, 1244–1249 (2001).
[CrossRef]

Uchiyama, T.

Valet, T.

M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, D. Chen, “Characteristics of thermally assisted magnetic recording,” IEEE Trans. Magn. 37, 1244–1249 (2001).
[CrossRef]

Yamagishi, S.

Yamakita, J.

J. Yamakita, K. Rokushima, “Modal expansion method for dielectric gratings with rectangular grooves,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moire Phenomena 2, J. M. Lerner, ed., Proc. SPIE503, 239–243 (1984).
[CrossRef]

Yanagisawa, M.

J. Fujikata, T. Ishi, H. Yokota, R. J. Mizuno, K. Suzuki, M. Yanagisawa, K. Ohashi, “Near field optical head with a surface plasmon resonance structure,” in Technical Digest of Optics Japan (Optical Society of Japan, Tokyo, 2002), paper 3pA6 (in Japanese).

Yatsui, T.

T. Yatsui, K. Itsumi, M. Kourogi, M. Ohtsu, “Metallized pyramidal silicon probe with extremely high throughput and resolution capability for optical near-field technology,” Appl. Phys. Lett. 4, 2257–2259 (2002).
[CrossRef]

Yokota, H.

J. Fujikata, T. Ishi, H. Yokota, R. J. Mizuno, K. Suzuki, M. Yanagisawa, K. Ohashi, “Near field optical head with a surface plasmon resonance structure,” in Technical Digest of Optics Japan (Optical Society of Japan, Tokyo, 2002), paper 3pA6 (in Japanese).

Appl. Opt. (3)

Appl. Phys. Lett. (3)

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

T. Yatsui, K. Itsumi, M. Kourogi, M. Ohtsu, “Metallized pyramidal silicon probe with extremely high throughput and resolution capability for optical near-field technology,” Appl. Phys. Lett. 4, 2257–2259 (2002).
[CrossRef]

IEEE Trans. Magn. (1)

M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, D. Chen, “Characteristics of thermally assisted magnetic recording,” IEEE Trans. Magn. 37, 1244–1249 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S.-T. Peng, A. A. Oliner, “Guidance and leakage properties of a class of open dielectric waveguides. 1. Mathematical formulations,” IEEE Trans. Microwave Theory Tech. MTT-29, 843–855 (1981).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
[CrossRef]

Phys. Rev. Lett. (1)

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

proceedings of Magneto-Optical Recording International Symposium J. Magn. Soc. Jpn. 23, Suppl. (1)

H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima, K. Ohta, “New magnetic recording method using laser assisted read/write technologies,” proceedings of Magneto-Optical Recording International Symposium J. Magn. Soc. Jpn. 23, Suppl. S1, 233–236 (1999).

Other (8)

M. Ohtsu, ed., Progress in Nano-electro-optics I (Springer-Verlag, Berlin, 2002).

U. C. Fischer, “The tetrahedral tip as a probe for scanning near-field optical microscopy,” in Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 255–262.
[CrossRef]

J. Yamakita, K. Rokushima, “Modal expansion method for dielectric gratings with rectangular grooves,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moire Phenomena 2, J. M. Lerner, ed., Proc. SPIE503, 239–243 (1984).
[CrossRef]

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Poynting is a licensed commercial FDTD program from Fujitsu Limited, Japan.

T. Matsumoto, T. Shimano, S. Hosaka, “An efficient probe with a planar metallic pattern for high-density near field optical memory,” in Technical Digest of 6th International Conference on Near Field Optics and Related Techniques (University of Twente, Enschede, The Netherlands, 2000), p. 55.

T. Rausch, J. A. Bain, D. D. Stancil, T. E. Schlesinger, “Near field hybrid recording with a mode index waveguide lens,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 66–71 (2000).
[CrossRef]

J. Fujikata, T. Ishi, H. Yokota, R. J. Mizuno, K. Suzuki, M. Yanagisawa, K. Ohashi, “Near field optical head with a surface plasmon resonance structure,” in Technical Digest of Optics Japan (Optical Society of Japan, Tokyo, 2002), paper 3pA6 (in Japanese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Geometry of the butted-grating structure. (1) The center is a high-transmittance diffraction grating. Left and right sides are very low-transmittance diffraction gratings. Both left- and right-side diffraction gratings are butted to the center grating. Here there are (2) three periods (3) one period for each side grating.

Fig. 2
Fig. 2

Geometry of the rectangular grating used in our calculations.

Fig. 3
Fig. 3

(a) Zero-order transmittance for a metallic-based grating consisting of Al and SiO2 with the same duty ratio of 0.5 for three values of grating period d, 20 to 60 nm. This calculated transmittance does not include higher-order diffraction evanescent leaky waves. (b) Outgoing transmission efficiency from a diffraction grating (d = 60 nm) with respect to the outgoing direction from the exit surface. Solid curve, results calculated by the eigenfunction expansion method. The filled circles that indicate FDTD calculations are explained in Section 3. This efficiency includes higher-order diffraction evanescent leaky waves [Eq. (2)]. Grating height h is 500 nm. (c) Zero-order transmittance for a grating consisting of Si and diamond with the same duty ratio of 0.5 for three values of grating period d, from 20 to 50 nm. This calculated transmittance does not include higher-order diffraction evanescent leaky waves.

Fig. 4
Fig. 4

Zero-order transmittance for a metallic-based grating consisting of Al with a width of 200 nm and diamond with a width of 100 nm. This is an example of very low transmittance.

Fig. 5
Fig. 5

(a) Propagation constant with respect to center grating period d for metallic-based butted gratings. The duty ratio is fixed at 0.5. (b) Propagation constant with respect to center grating period d for high- and low-refractive-index butted gratings. The duty ratio is fixed at 0.5.

Fig. 6
Fig. 6

(a) Refractive-index distribution of metallic-based butted gratings in the x direction. (b) Calculated eigenfunction of metallic-based butted gratings that satisfies transverse resonance conditions. (c) Calculated electric-field intensity distributions (FDTD) in the x direction in metallic-based butted gratings. (d) Calculated electric-field-intensity distributions along the x-z plane.

Fig. 7
Fig. 7

(a) Geometry of a butted-grating structure that uses high- and low-refractive-index gratings. L 1= 800 nm, L 2 = 150 nm. (b) Refractive-index distribution of high- and low-refractive-index butted gratings in the x direction. (c) Calculated eigenfunction of high- and low-refractive-index butted gratings that satisfy transverse resonance conditions. (d) Calculated electric-field intensity distributions (FDTD) for the x direction in high- and low-refractive-index butted gratings. (e) Calculated electric-field intensity distributions along the x-z plane.

Fig. 8
Fig. 8

Schematic of the optical head for laser-assisted magnetic-recording storage.

Fig. 9
Fig. 9

Schematic of optical-beam interference by a side wall along the y-z direction. The incident wave is an x-direction polarized beam.

Fig. 10
Fig. 10

Optical-head geometry with a metallic-based butted grating structure. Lengths α = 1220 nm and β = 190 nm. 1, SiO2 thickness 30 nm; 2, Al thickness 30 nm; 3, diamond thickness 100 nm; 4, Al thickness 200 nm.

Fig. 11
Fig. 11

(a) Calculated electric-field-intensity distributions along the y-z plane. (b) Calculated electric-field intensity distributions along the x-z plane. (c) Calculated optical-spot profile at z = 15 nm from the exit surface.

Fig. 12
Fig. 12

Optical head geometry with a high- and low-refractive-index butted grating structure. Lengths α = 150 nm, β = 290 nm, and γ = 1100 nm. 1, Diamond thickness 25 nm; 2, Si thickness 25 nm; 3, SiO2 thickness 40 nm; 4, Si thickness 120 nm.

Fig. 13
Fig. 13

Calculated electric-field-intensity distributions along the y-z plane. (b) Calculated electric-field-intensity distributions along the x-z plane. (c) Calculated optical-spot profile at z = 15 nm from the exit surface.

Tables (1)

Tables Icon

Table 1 Summary of Optical-Power Efficiency of Butted Gratings Structures

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ψIx, z=exp-ik0sin θix+cos θiz+n=- Rn expik0γnx+1-γn21/2z,
ψIIIx, z=n=-Tn expik0γnx-1-γn21/2z.
γn=sin θi+nλd,
ψIIx, z=l XlxAl expiΛlz+Bl exp-iΛlz,
Hy1x, z=XxexpiΛ1z,
Ez1x, z=VxexpiΛ1z.
Exx, z=-ik0εxHyz,
Ezx, z=ik0εxHyx.
Fn=cosβndnik0εnβnsinβndniβnk0εnsinβndncosβndn,
X0V0=FtX4V4=AtBtCtDtX4V4,
Z0ZΛ2=V0X0=CtX4+DtV4AtX4+BtV4.
ZΛ2=Ct+DtZ1At+BtZ1=0.

Metrics