Abstract

Local near-field enhancement of random Sb-SiN films has been studied. Specimens consisting of a random Sb-SiN film and an optical recording layer were prepared and exposed to a focused laser beam. Laser-induced ablation occurred on the recording layer adjacent to random Sb-SiN film much faster and at much lower power than on a single recording layer. These results indicate that an optical field can be enhanced by random Sb-SiN films. The enhanced field was subsequently investigated by scanning near-field optical microscopy, and the pictures revealed that the enhanced field was localized.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
    [CrossRef]
  2. R. R. Agayan, F. Gittes, R. Kopelman, C. F. Schmidt, “Optical trapping near resonance absorption,” Appl. Opt. 41, 2318–2327 (2002).
    [CrossRef] [PubMed]
  3. W. Wang, G. Yang, Z. Chen, H. Lu, Y. Zhou, G. Yang, X. Kong, “Nonlinear refraction and saturable absorption in Au:BaTiO3 composite films,” Appl. Opt. 42, 5591–5595 (2003).
    [CrossRef] [PubMed]
  4. L. Yang, Y. Liu, Q. Wang, H. Shi, G. Li, L. Zhang, “The plasmon resonance absorption of Ag/SiO2 nanocomposite films,” Microelectron. Eng. 66, 192–198 (2003).
    [CrossRef]
  5. A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
    [CrossRef]
  6. S. K. Mandal, R. K. Roy, A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261–265 (2003).
    [CrossRef]
  7. E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
    [CrossRef]
  8. A. Taleb, V. Russier, A. Courty, M. P. Pileni, “Collective optical properties of silver nanoparticles organized in two-dimensional superlattices,” Phys. Rev. B 59, 13350–13358 (1999).
    [CrossRef]
  9. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
    [CrossRef]
  10. V. M. Shalaev, E. Y. Poliakov, V. A. Markel, “Small-particle composites. II. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
    [CrossRef]
  11. A. K. Sarychev, V. M. Shalaev, “Electromagnetic field fluctuation and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275–371 (2000).
    [CrossRef]
  12. M. Salermo, N. Félidj, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Near-field optical response of a two-dimensional grating of gold nanoparticles,” Phys. Rev. B 63, 165422 (2001).
    [CrossRef]
  13. G. A. Wurtz, N. M. Dimitrijevic, G. P. Wiederrecht, “The spatial extension of the field scattered by silver nanoparticles excited near resonance as observed by apertureless near-field optical microscopy,” Jpn. J. Appl. Phys. 41, L351–L354 (2002).
    [CrossRef]
  14. S. M. Huang, M. H. Hong, B. Lukiyanchuk, T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–296 (2003).
  15. K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56, 150–154 (2002).
    [CrossRef]
  16. N. Félidj, J. Aubard, G. Lévi, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
    [CrossRef]
  17. Y. D. Suh, G. K. Schenter, L. Zhu, H. P. Lu, “Probing nanoscale surface enhanced Raman-scattering fluctuation dynamics using correlated AFM and confocal ultramicroscopy,” Ultramicroscopy 97, 89–102 (2003).
    [CrossRef] [PubMed]
  18. M. Osawa, “Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS),” Bull. Chem. Soc. Jpn. 70, 2861–2865 (1997).
    [CrossRef]
  19. G. T. Merklin, L.-T. He, P. R. Griffiths, “Surface-enhanced infrared absorption spectrometry of p-nitrothiophenol and its disulfide,” Appl. Spectrosc. 53, 1448–1453 (1999).
    [CrossRef]
  20. F. X. Liu, M. Tang, L. Liu, S. Lu, J. Y. Wang, Z. Y. Chen, R. Ji, “Enhanced optical properties of Ag-TiO2 (rutile) hybrid nanopowder,” Phys. Status Solidi A 179, 437–443 (2000).
    [CrossRef]
  21. K. Chernoutsan, V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romanov, A. Syrmicov, O. Shaligina, E. Zhukov, “Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires,” Phys. E 15, 111–117 (2002).
    [CrossRef]
  22. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 5.
  23. A. Giusto, R. Saija, M. A. Latì, P. Denti, F. Borghese, O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt. 42, 4375–4380 (2003).
    [CrossRef] [PubMed]
  24. R. Saija, M. A. Latì, P. Denti, F. Borghese, A. Giusto, O. I. Sindomi, “Efficient light-scattering calculations for aggregates of large spheres,” Appl. Opt. 42, 2785–2793 (2003).
    [CrossRef] [PubMed]
  25. A. N. Oraevsky, “Is there a collective dielectric resonance?” JETP Lett. 78, 8–10 (2003).
    [CrossRef]
  26. V. M. Shalaev, Nonlinear Optics of Random Media (Springer-Verlag, Berlin, 2000), pp. 24–26.

2003 (10)

L. Yang, Y. Liu, Q. Wang, H. Shi, G. Li, L. Zhang, “The plasmon resonance absorption of Ag/SiO2 nanocomposite films,” Microelectron. Eng. 66, 192–198 (2003).
[CrossRef]

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

S. K. Mandal, R. K. Roy, A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261–265 (2003).
[CrossRef]

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

S. M. Huang, M. H. Hong, B. Lukiyanchuk, T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–296 (2003).

Y. D. Suh, G. K. Schenter, L. Zhu, H. P. Lu, “Probing nanoscale surface enhanced Raman-scattering fluctuation dynamics using correlated AFM and confocal ultramicroscopy,” Ultramicroscopy 97, 89–102 (2003).
[CrossRef] [PubMed]

A. N. Oraevsky, “Is there a collective dielectric resonance?” JETP Lett. 78, 8–10 (2003).
[CrossRef]

R. Saija, M. A. Latì, P. Denti, F. Borghese, A. Giusto, O. I. Sindomi, “Efficient light-scattering calculations for aggregates of large spheres,” Appl. Opt. 42, 2785–2793 (2003).
[CrossRef] [PubMed]

A. Giusto, R. Saija, M. A. Latì, P. Denti, F. Borghese, O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt. 42, 4375–4380 (2003).
[CrossRef] [PubMed]

W. Wang, G. Yang, Z. Chen, H. Lu, Y. Zhou, G. Yang, X. Kong, “Nonlinear refraction and saturable absorption in Au:BaTiO3 composite films,” Appl. Opt. 42, 5591–5595 (2003).
[CrossRef] [PubMed]

2002 (5)

K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56, 150–154 (2002).
[CrossRef]

R. R. Agayan, F. Gittes, R. Kopelman, C. F. Schmidt, “Optical trapping near resonance absorption,” Appl. Opt. 41, 2318–2327 (2002).
[CrossRef] [PubMed]

K. Chernoutsan, V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romanov, A. Syrmicov, O. Shaligina, E. Zhukov, “Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires,” Phys. E 15, 111–117 (2002).
[CrossRef]

G. A. Wurtz, N. M. Dimitrijevic, G. P. Wiederrecht, “The spatial extension of the field scattered by silver nanoparticles excited near resonance as observed by apertureless near-field optical microscopy,” Jpn. J. Appl. Phys. 41, L351–L354 (2002).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

2001 (1)

M. Salermo, N. Félidj, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Near-field optical response of a two-dimensional grating of gold nanoparticles,” Phys. Rev. B 63, 165422 (2001).
[CrossRef]

2000 (2)

A. K. Sarychev, V. M. Shalaev, “Electromagnetic field fluctuation and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275–371 (2000).
[CrossRef]

F. X. Liu, M. Tang, L. Liu, S. Lu, J. Y. Wang, Z. Y. Chen, R. Ji, “Enhanced optical properties of Ag-TiO2 (rutile) hybrid nanopowder,” Phys. Status Solidi A 179, 437–443 (2000).
[CrossRef]

1999 (2)

A. Taleb, V. Russier, A. Courty, M. P. Pileni, “Collective optical properties of silver nanoparticles organized in two-dimensional superlattices,” Phys. Rev. B 59, 13350–13358 (1999).
[CrossRef]

G. T. Merklin, L.-T. He, P. R. Griffiths, “Surface-enhanced infrared absorption spectrometry of p-nitrothiophenol and its disulfide,” Appl. Spectrosc. 53, 1448–1453 (1999).
[CrossRef]

1998 (1)

B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
[CrossRef]

1997 (1)

M. Osawa, “Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS),” Bull. Chem. Soc. Jpn. 70, 2861–2865 (1997).
[CrossRef]

1996 (2)

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

V. M. Shalaev, E. Y. Poliakov, V. A. Markel, “Small-particle composites. II. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
[CrossRef]

Agayan, R. R.

Armstrong, R. L.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Aubard, J.

N. Félidj, J. Aubard, G. Lévi, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Aussenegg, F. R.

M. Salermo, N. Félidj, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Near-field optical response of a two-dimensional grating of gold nanoparticles,” Phys. Rev. B 63, 165422 (2001).
[CrossRef]

Badizadegan, K.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 5.

Boone, C.

Borghese, F.

Broyer, M.

B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
[CrossRef]

Chen, Z.

Chen, Z. Y.

F. X. Liu, M. Tang, L. Liu, S. Lu, J. Y. Wang, Z. Y. Chen, R. Ji, “Enhanced optical properties of Ag-TiO2 (rutile) hybrid nanopowder,” Phys. Status Solidi A 179, 437–443 (2000).
[CrossRef]

Chernoutsan, K.

K. Chernoutsan, V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romanov, A. Syrmicov, O. Shaligina, E. Zhukov, “Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires,” Phys. E 15, 111–117 (2002).
[CrossRef]

Chong, T. C.

S. M. Huang, M. H. Hong, B. Lukiyanchuk, T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–296 (2003).

Coronado, E. A.

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

Cottancin, E.

B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
[CrossRef]

Courty, A.

A. Taleb, V. Russier, A. Courty, M. P. Pileni, “Collective optical properties of silver nanoparticles organized in two-dimensional superlattices,” Phys. Rev. B 59, 13350–13358 (1999).
[CrossRef]

Denti, P.

Dimitrijevic, N. M.

G. A. Wurtz, N. M. Dimitrijevic, G. P. Wiederrecht, “The spatial extension of the field scattered by silver nanoparticles excited near resonance as observed by apertureless near-field optical microscopy,” Jpn. J. Appl. Phys. 41, L351–L354 (2002).
[CrossRef]

Ding, Z.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Dneprovskii, V.

K. Chernoutsan, V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romanov, A. Syrmicov, O. Shaligina, E. Zhukov, “Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires,” Phys. E 15, 111–117 (2002).
[CrossRef]

Félidj, N.

N. Félidj, J. Aubard, G. Lévi, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

M. Salermo, N. Félidj, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Near-field optical response of a two-dimensional grating of gold nanoparticles,” Phys. Rev. B 63, 165422 (2001).
[CrossRef]

Gavrilov, S.

K. Chernoutsan, V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romanov, A. Syrmicov, O. Shaligina, E. Zhukov, “Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires,” Phys. E 15, 111–117 (2002).
[CrossRef]

Gittes, F.

Giusto, A.

Griffiths, P. R.

Gusev, V.

K. Chernoutsan, V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romanov, A. Syrmicov, O. Shaligina, E. Zhukov, “Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires,” Phys. E 15, 111–117 (2002).
[CrossRef]

Haka, A. S.

He, L.-T.

Hong, M. H.

S. M. Huang, M. H. Hong, B. Lukiyanchuk, T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–296 (2003).

Huang, S. M.

S. M. Huang, M. H. Hong, B. Lukiyanchuk, T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–296 (2003).

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 5.

Ji, R.

F. X. Liu, M. Tang, L. Liu, S. Lu, J. Y. Wang, Z. Y. Chen, R. Ji, “Enhanced optical properties of Ag-TiO2 (rutile) hybrid nanopowder,” Phys. Status Solidi A 179, 437–443 (2000).
[CrossRef]

Kim, W.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Kneipp, H.

Kneipp, K.

Kong, X.

Kopelman, R.

Krenn, J. R.

M. Salermo, N. Félidj, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Near-field optical response of a two-dimensional grating of gold nanoparticles,” Phys. Rev. B 63, 165422 (2001).
[CrossRef]

Latì, M. A.

Leitner, A.

M. Salermo, N. Félidj, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Near-field optical response of a two-dimensional grating of gold nanoparticles,” Phys. Rev. B 63, 165422 (2001).
[CrossRef]

Lermé, J.

B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
[CrossRef]

Lévi, G.

N. Félidj, J. Aubard, G. Lévi, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Li, G.

L. Yang, Y. Liu, Q. Wang, H. Shi, G. Li, L. Zhang, “The plasmon resonance absorption of Ag/SiO2 nanocomposite films,” Microelectron. Eng. 66, 192–198 (2003).
[CrossRef]

Liu, F.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Liu, F. X.

F. X. Liu, M. Tang, L. Liu, S. Lu, J. Y. Wang, Z. Y. Chen, R. Ji, “Enhanced optical properties of Ag-TiO2 (rutile) hybrid nanopowder,” Phys. Status Solidi A 179, 437–443 (2000).
[CrossRef]

Liu, L.

F. X. Liu, M. Tang, L. Liu, S. Lu, J. Y. Wang, Z. Y. Chen, R. Ji, “Enhanced optical properties of Ag-TiO2 (rutile) hybrid nanopowder,” Phys. Status Solidi A 179, 437–443 (2000).
[CrossRef]

Liu, Y.

L. Yang, Y. Liu, Q. Wang, H. Shi, G. Li, L. Zhang, “The plasmon resonance absorption of Ag/SiO2 nanocomposite films,” Microelectron. Eng. 66, 192–198 (2003).
[CrossRef]

Lu, H.

Lu, H. P.

Y. D. Suh, G. K. Schenter, L. Zhu, H. P. Lu, “Probing nanoscale surface enhanced Raman-scattering fluctuation dynamics using correlated AFM and confocal ultramicroscopy,” Ultramicroscopy 97, 89–102 (2003).
[CrossRef] [PubMed]

Lu, S.

F. X. Liu, M. Tang, L. Liu, S. Lu, J. Y. Wang, Z. Y. Chen, R. Ji, “Enhanced optical properties of Ag-TiO2 (rutile) hybrid nanopowder,” Phys. Status Solidi A 179, 437–443 (2000).
[CrossRef]

Lukiyanchuk, B.

S. M. Huang, M. H. Hong, B. Lukiyanchuk, T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–296 (2003).

Mandal, S. K.

S. K. Mandal, R. K. Roy, A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261–265 (2003).
[CrossRef]

Markel, V. A.

V. M. Shalaev, E. Y. Poliakov, V. A. Markel, “Small-particle composites. II. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Merklin, G. T.

Muljarov, E.

K. Chernoutsan, V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romanov, A. Syrmicov, O. Shaligina, E. Zhukov, “Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires,” Phys. E 15, 111–117 (2002).
[CrossRef]

Oraevsky, A. N.

A. N. Oraevsky, “Is there a collective dielectric resonance?” JETP Lett. 78, 8–10 (2003).
[CrossRef]

Osawa, M.

M. Osawa, “Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS),” Bull. Chem. Soc. Jpn. 70, 2861–2865 (1997).
[CrossRef]

Pal, A. K.

S. K. Mandal, R. K. Roy, A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261–265 (2003).
[CrossRef]

Palpant, B.

B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
[CrossRef]

Pan, A.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Pellarin, M.

B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
[CrossRef]

Perez, A.

B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
[CrossRef]

Pileni, M. P.

A. Taleb, V. Russier, A. Courty, M. P. Pileni, “Collective optical properties of silver nanoparticles organized in two-dimensional superlattices,” Phys. Rev. B 59, 13350–13358 (1999).
[CrossRef]

Poliakov, E. Y.

V. M. Shalaev, E. Y. Poliakov, V. A. Markel, “Small-particle composites. II. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
[CrossRef]

Prével, B.

B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
[CrossRef]

Romanov, S.

K. Chernoutsan, V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romanov, A. Syrmicov, O. Shaligina, E. Zhukov, “Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires,” Phys. E 15, 111–117 (2002).
[CrossRef]

Roy, R. K.

S. K. Mandal, R. K. Roy, A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261–265 (2003).
[CrossRef]

Russier, V.

A. Taleb, V. Russier, A. Courty, M. P. Pileni, “Collective optical properties of silver nanoparticles organized in two-dimensional superlattices,” Phys. Rev. B 59, 13350–13358 (1999).
[CrossRef]

Saija, R.

Salermo, M.

M. Salermo, N. Félidj, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Near-field optical response of a two-dimensional grating of gold nanoparticles,” Phys. Rev. B 63, 165422 (2001).
[CrossRef]

Sarychev, A. K.

A. K. Sarychev, V. M. Shalaev, “Electromagnetic field fluctuation and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275–371 (2000).
[CrossRef]

Schatz, G. C.

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

Schenter, G. K.

Y. D. Suh, G. K. Schenter, L. Zhu, H. P. Lu, “Probing nanoscale surface enhanced Raman-scattering fluctuation dynamics using correlated AFM and confocal ultramicroscopy,” Ultramicroscopy 97, 89–102 (2003).
[CrossRef] [PubMed]

Schmidt, C. F.

Shalaev, V. M.

A. K. Sarychev, V. M. Shalaev, “Electromagnetic field fluctuation and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275–371 (2000).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

V. M. Shalaev, E. Y. Poliakov, V. A. Markel, “Small-particle composites. II. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
[CrossRef]

V. M. Shalaev, Nonlinear Optics of Random Media (Springer-Verlag, Berlin, 2000), pp. 24–26.

Shaligina, O.

K. Chernoutsan, V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romanov, A. Syrmicov, O. Shaligina, E. Zhukov, “Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires,” Phys. E 15, 111–117 (2002).
[CrossRef]

Shi, H.

L. Yang, Y. Liu, Q. Wang, H. Shi, G. Li, L. Zhang, “The plasmon resonance absorption of Ag/SiO2 nanocomposite films,” Microelectron. Eng. 66, 192–198 (2003).
[CrossRef]

Sindomi, O. I.

Sindoni, O. I.

Stechel, E. B.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Su, X.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Suh, Y. D.

Y. D. Suh, G. K. Schenter, L. Zhu, H. P. Lu, “Probing nanoscale surface enhanced Raman-scattering fluctuation dynamics using correlated AFM and confocal ultramicroscopy,” Ultramicroscopy 97, 89–102 (2003).
[CrossRef] [PubMed]

Syrmicov, A.

K. Chernoutsan, V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romanov, A. Syrmicov, O. Shaligina, E. Zhukov, “Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires,” Phys. E 15, 111–117 (2002).
[CrossRef]

Taleb, A.

A. Taleb, V. Russier, A. Courty, M. P. Pileni, “Collective optical properties of silver nanoparticles organized in two-dimensional superlattices,” Phys. Rev. B 59, 13350–13358 (1999).
[CrossRef]

Tang, M.

F. X. Liu, M. Tang, L. Liu, S. Lu, J. Y. Wang, Z. Y. Chen, R. Ji, “Enhanced optical properties of Ag-TiO2 (rutile) hybrid nanopowder,” Phys. Status Solidi A 179, 437–443 (2000).
[CrossRef]

Treilleux, M.

B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
[CrossRef]

Vialle, J. L.

B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
[CrossRef]

Wang, J. Y.

F. X. Liu, M. Tang, L. Liu, S. Lu, J. Y. Wang, Z. Y. Chen, R. Ji, “Enhanced optical properties of Ag-TiO2 (rutile) hybrid nanopowder,” Phys. Status Solidi A 179, 437–443 (2000).
[CrossRef]

Wang, Q.

L. Yang, Y. Liu, Q. Wang, H. Shi, G. Li, L. Zhang, “The plasmon resonance absorption of Ag/SiO2 nanocomposite films,” Microelectron. Eng. 66, 192–198 (2003).
[CrossRef]

Wang, W.

Wiederrecht, G. P.

G. A. Wurtz, N. M. Dimitrijevic, G. P. Wiederrecht, “The spatial extension of the field scattered by silver nanoparticles excited near resonance as observed by apertureless near-field optical microscopy,” Jpn. J. Appl. Phys. 41, L351–L354 (2002).
[CrossRef]

Wurtz, G. A.

G. A. Wurtz, N. M. Dimitrijevic, G. P. Wiederrecht, “The spatial extension of the field scattered by silver nanoparticles excited near resonance as observed by apertureless near-field optical microscopy,” Jpn. J. Appl. Phys. 41, L351–L354 (2002).
[CrossRef]

Yang, G.

Yang, L.

L. Yang, Y. Liu, Q. Wang, H. Shi, G. Li, L. Zhang, “The plasmon resonance absorption of Ag/SiO2 nanocomposite films,” Microelectron. Eng. 66, 192–198 (2003).
[CrossRef]

Yang, Z.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Yoshizawa, N.

Zhang, L.

L. Yang, Y. Liu, Q. Wang, H. Shi, G. Li, L. Zhang, “The plasmon resonance absorption of Ag/SiO2 nanocomposite films,” Microelectron. Eng. 66, 192–198 (2003).
[CrossRef]

Zheng, H.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Zhou, Y.

Zhu, L.

Y. D. Suh, G. K. Schenter, L. Zhu, H. P. Lu, “Probing nanoscale surface enhanced Raman-scattering fluctuation dynamics using correlated AFM and confocal ultramicroscopy,” Ultramicroscopy 97, 89–102 (2003).
[CrossRef] [PubMed]

Zhu, Y.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Zhukov, E.

K. Chernoutsan, V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romanov, A. Syrmicov, O. Shaligina, E. Zhukov, “Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires,” Phys. E 15, 111–117 (2002).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. A (1)

S. M. Huang, M. H. Hong, B. Lukiyanchuk, T. C. Chong, “Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects,” Appl. Phys. A 77, 293–296 (2003).

Appl. Spectrosc. (2)

Appl. Surf. Sci. (1)

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

M. Osawa, “Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS),” Bull. Chem. Soc. Jpn. 70, 2861–2865 (1997).
[CrossRef]

J. Chem. Phys. (1)

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

J. Phys. D (1)

S. K. Mandal, R. K. Roy, A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261–265 (2003).
[CrossRef]

JETP Lett. (1)

A. N. Oraevsky, “Is there a collective dielectric resonance?” JETP Lett. 78, 8–10 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

G. A. Wurtz, N. M. Dimitrijevic, G. P. Wiederrecht, “The spatial extension of the field scattered by silver nanoparticles excited near resonance as observed by apertureless near-field optical microscopy,” Jpn. J. Appl. Phys. 41, L351–L354 (2002).
[CrossRef]

Microelectron. Eng. (1)

L. Yang, Y. Liu, Q. Wang, H. Shi, G. Li, L. Zhang, “The plasmon resonance absorption of Ag/SiO2 nanocomposite films,” Microelectron. Eng. 66, 192–198 (2003).
[CrossRef]

Phys. E (1)

K. Chernoutsan, V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romanov, A. Syrmicov, O. Shaligina, E. Zhukov, “Linear and nonlinear optical properties of excitons in semiconductor-dielectric quantum wires,” Phys. E 15, 111–117 (2002).
[CrossRef]

Phys. Rep. (1)

A. K. Sarychev, V. M. Shalaev, “Electromagnetic field fluctuation and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275–371 (2000).
[CrossRef]

Phys. Rev. B (6)

M. Salermo, N. Félidj, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Near-field optical response of a two-dimensional grating of gold nanoparticles,” Phys. Rev. B 63, 165422 (2001).
[CrossRef]

B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

A. Taleb, V. Russier, A. Courty, M. P. Pileni, “Collective optical properties of silver nanoparticles organized in two-dimensional superlattices,” Phys. Rev. B 59, 13350–13358 (1999).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

V. M. Shalaev, E. Y. Poliakov, V. A. Markel, “Small-particle composites. II. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
[CrossRef]

Phys. Status Solidi A (1)

F. X. Liu, M. Tang, L. Liu, S. Lu, J. Y. Wang, Z. Y. Chen, R. Ji, “Enhanced optical properties of Ag-TiO2 (rutile) hybrid nanopowder,” Phys. Status Solidi A 179, 437–443 (2000).
[CrossRef]

Ultramicroscopy (1)

Y. D. Suh, G. K. Schenter, L. Zhu, H. P. Lu, “Probing nanoscale surface enhanced Raman-scattering fluctuation dynamics using correlated AFM and confocal ultramicroscopy,” Ultramicroscopy 97, 89–102 (2003).
[CrossRef] [PubMed]

Other (2)

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 5.

V. M. Shalaev, Nonlinear Optics of Random Media (Springer-Verlag, Berlin, 2000), pp. 24–26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Transmission-electron micrograph of a random Sb-SiN film with a thickness of 40 nm.

Fig. 2
Fig. 2

Transmittances of (a) a glass sample and (b) a glass sample covered by a random Sb-SiN film with a thickness of 40 nm.

Fig. 3
Fig. 3

Cross-sectional view of a double-layer specimen orderly consisting of a random Sb-SiN film and a recording layer (GeSbTe film).

Fig. 4
Fig. 4

Schematics of relationships between the responses of GeSbTe films and the power and duration of the laser pulse. The thickness of the GeSbTe films in all specimens was 7 nm, and the thicknesses d of the random Sb-SiN films were as shown.

Fig. 5
Fig. 5

Scanning-electron microscope pictures of the ablated spots induced by a laser during 5 μs and at a power of 8.2 mW (a) on a single recording layer and (b) on a recording layer adjacent to a random Sb-SiN film with a thickness of 40 nm.

Fig. 6
Fig. 6

SNOM images of the transmitted light after its passage through (a) a glass sample and (b) a glass sample covered by a random Sb-SiN film with a thickness of 40 nm. The scanned area was 10 μm × 10 μm. (c), (d) Intensity distributions along lines AB and CD, respectively.

Fig. 7
Fig. 7

(a) Primary incident field; (b) Sb particles embedded in SiN; (c) field calculated after scattering of Sb particles without regard to multiple scattering, (d) field calculated after scattering of Sb particles and with multiple scattering considered.

Fig. 8
Fig. 8

Schematic of the ablating process (a) without and (b) with a random Sb-SiN film.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Es=pk3/4πSiN2 cos ϕ sin θkr-3-ikr-2er-cos ϕ cos θkr-3-ikr-2+kr-1eθ+sin ϕkr-3-ikr-2+kr-1eϕ,
|E0R|=Emax exp-R/R02,
E=E0+ Esj,

Metrics