Abstract

We describe the design, properties, and performance of an excitation-emission (EE) fluorimeter that enables spectral characterization of an object simultaneously with respect to both its excitation and its emission properties. Such devices require two wavelength-selecting elements, one in the optical path of the excitation broadband light to obtain tunable excitation and the other to analyze the resulting fluorescence. Existing EE instruments are usually implemented with two monochromators. The key feature of our EE fluorimeter is that it employs lightweight and compact linear interference filters (LIFs) as the wavelength-selection elements. The spectral tuning of both the excitation and the detection LIFs is achieved by their mechanical shift relative to each other by use of two computer-controlled linear step motors. The performance of the LIF-based EE fluorimeter is demonstrated with the fluorescent spectra of various dyes and their mixtures.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. Warner, G. D. Christian, E. R. Davidson, “Analysis of multicomponent fluorescence data,” Anal. Chem. 49, 564–573 (1977).
    [CrossRef]
  2. P. R. Rava, R. Richards-Kortum, M. S. Feld, J. J. Baraga, “Contour mapping of spectral diagnostics,” U.S. patent5,345,941 (13April1993).
  3. K. J. Albert, D. R. Walt, “High-speed fluorescence detection of explosives-like vapors,” Anal. Chem. 72, 1947–1955 (2000).
    [CrossRef] [PubMed]
  4. A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, R. R. Richards-Kortum, “Fluorescence excitation-emission matrices of human tissues: a system for in vivo measurements and method of data analysis,” Appl. Spectrosc. 53, 302–311 (1999).
    [CrossRef]
  5. A. R. Muroski, K. S. Booksh, M. L. Myrick, “Single measurement excitation emission matrix spectrofluometer for determination of hydrocarbons in ocean water,” Anal. Chem. 68, 3534–3538 (1996).
    [CrossRef]
  6. R. D. Jiji, G. A. Cooper, K. S. Booksh, “Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic and aromatic hydrocarbons,” Anal. Chim. Acta 397, 61–72 (1999).
    [CrossRef]
  7. SPEX-3D from Jobin-Yvon, information available at http://www.jobinyvon.co.uk/jy/fluorescence/fluorescence.htm# .
  8. R. Richard-Kortum, L. Tong, M. S. Feld, “Spectral diagnosis of diseased tissue,” U.S. patent5,421,337 (6June1995).
  9. R. A. Zangaro, L. Silveira, R. Manochoran, G. Zonios, I. Itzkan, R. R. Dasari, J. Van Dam, M. S. Feld, “Rapid multiexcitation fluorescent spectroscopy for in vivo tissue diagnostics,” Appl. Opt. 35, 5211–5219 (1996).
    [CrossRef]
  10. J. E. Kenny, “Laser fluorescence EEM probe for cone penetrometer pollution analysis,” EPA/600/R-99/041 (U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C., 1999).
  11. C. Kieleck, B. Bousquet, G. Le Brun, J. Cariou, J. Lotrian, “Laser induced fluorescent imaging: application to groups of macroalgae identification,” J. Phys. B 34, 2561–2571 (2001).
  12. S. J. Hart, R. D. Jiji, “Light emitting diode excitation emission matrix fluorescence spectroscopy,” Analyst 127, 1693–1699 (2002).
    [CrossRef]
  13. C. D. Tran, R. J. Furlan, “Spectrofluorometer based on acousto-optics tunable filter for rapid scanning of multicomponent sample analysis,” Anal. Chem. 65, 1675–1681 (1993).
    [CrossRef] [PubMed]
  14. J. Romier, J. Selves, J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998).
    [CrossRef]
  15. K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74, 2021–2028 (2002).
    [CrossRef] [PubMed]
  16. H. R. Morris, C. C. Hoyt, P. J. Treado, “Imaging spectrometers for fluorescence and Raman microscopy—acoustooptic and liquid crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994).
    [CrossRef]
  17. S. D. Russell, R. L. Shimabukuro, A. D. Ramirez, M. G. Lovern, “Surface plasmon tunable filter for multiband spectral imaging,” in SPAWAR Systems Center Biennial Review (Space and Naval Warfare Systems Center, San Diego, Calif., 2001), pp. 117–121.
  18. P. A. Jansson, ed., Deconvolution with Applications in Spectroscopy (Academic, New York, 1984), p. 342.
  19. See calculations of the throughput of a monochromator, Oriel manual (Oriel Instruments, Stratford, Conn., 2003), pp. 4–13.
  20. A. P. Larson, H. Ahlberg, S. Folestad, “Semiconductor laser-induced fluorescence detection in picoliter volume flow cells,” Appl. Opt. 32, 794–805 (1993).
    [CrossRef] [PubMed]
  21. C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, C. P. G. Vallbhan, “Solvent effect on absolute fluorescence quantum yield of Rhodamine 6G determined using transient thermal lens technique,” Mod. Phys. Lett. B 13, 563–574 (1999).
    [CrossRef]
  22. DNA Technology Technical Bulletin, “Fluorescence excitation and emission,” www.idtdna.com/program/techbulletins/Fluorescent_Dye_Labeled_Oligonucleotides.asp .

2002 (2)

S. J. Hart, R. D. Jiji, “Light emitting diode excitation emission matrix fluorescence spectroscopy,” Analyst 127, 1693–1699 (2002).
[CrossRef]

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74, 2021–2028 (2002).
[CrossRef] [PubMed]

2001 (1)

C. Kieleck, B. Bousquet, G. Le Brun, J. Cariou, J. Lotrian, “Laser induced fluorescent imaging: application to groups of macroalgae identification,” J. Phys. B 34, 2561–2571 (2001).

2000 (1)

K. J. Albert, D. R. Walt, “High-speed fluorescence detection of explosives-like vapors,” Anal. Chem. 72, 1947–1955 (2000).
[CrossRef] [PubMed]

1999 (3)

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, R. R. Richards-Kortum, “Fluorescence excitation-emission matrices of human tissues: a system for in vivo measurements and method of data analysis,” Appl. Spectrosc. 53, 302–311 (1999).
[CrossRef]

R. D. Jiji, G. A. Cooper, K. S. Booksh, “Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic and aromatic hydrocarbons,” Anal. Chim. Acta 397, 61–72 (1999).
[CrossRef]

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, C. P. G. Vallbhan, “Solvent effect on absolute fluorescence quantum yield of Rhodamine 6G determined using transient thermal lens technique,” Mod. Phys. Lett. B 13, 563–574 (1999).
[CrossRef]

1998 (1)

J. Romier, J. Selves, J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998).
[CrossRef]

1996 (2)

R. A. Zangaro, L. Silveira, R. Manochoran, G. Zonios, I. Itzkan, R. R. Dasari, J. Van Dam, M. S. Feld, “Rapid multiexcitation fluorescent spectroscopy for in vivo tissue diagnostics,” Appl. Opt. 35, 5211–5219 (1996).
[CrossRef]

A. R. Muroski, K. S. Booksh, M. L. Myrick, “Single measurement excitation emission matrix spectrofluometer for determination of hydrocarbons in ocean water,” Anal. Chem. 68, 3534–3538 (1996).
[CrossRef]

1994 (1)

1993 (2)

A. P. Larson, H. Ahlberg, S. Folestad, “Semiconductor laser-induced fluorescence detection in picoliter volume flow cells,” Appl. Opt. 32, 794–805 (1993).
[CrossRef] [PubMed]

C. D. Tran, R. J. Furlan, “Spectrofluorometer based on acousto-optics tunable filter for rapid scanning of multicomponent sample analysis,” Anal. Chem. 65, 1675–1681 (1993).
[CrossRef] [PubMed]

1977 (1)

I. M. Warner, G. D. Christian, E. R. Davidson, “Analysis of multicomponent fluorescence data,” Anal. Chem. 49, 564–573 (1977).
[CrossRef]

Ahlberg, H.

Albert, K. J.

K. J. Albert, D. R. Walt, “High-speed fluorescence detection of explosives-like vapors,” Anal. Chem. 72, 1947–1955 (2000).
[CrossRef] [PubMed]

Baraga, J. J.

P. R. Rava, R. Richards-Kortum, M. S. Feld, J. J. Baraga, “Contour mapping of spectral diagnostics,” U.S. patent5,345,941 (13April1993).

Bindhu, C. V.

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, C. P. G. Vallbhan, “Solvent effect on absolute fluorescence quantum yield of Rhodamine 6G determined using transient thermal lens technique,” Mod. Phys. Lett. B 13, 563–574 (1999).
[CrossRef]

Booksh, K. S.

R. D. Jiji, G. A. Cooper, K. S. Booksh, “Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic and aromatic hydrocarbons,” Anal. Chim. Acta 397, 61–72 (1999).
[CrossRef]

A. R. Muroski, K. S. Booksh, M. L. Myrick, “Single measurement excitation emission matrix spectrofluometer for determination of hydrocarbons in ocean water,” Anal. Chem. 68, 3534–3538 (1996).
[CrossRef]

Bousquet, B.

C. Kieleck, B. Bousquet, G. Le Brun, J. Cariou, J. Lotrian, “Laser induced fluorescent imaging: application to groups of macroalgae identification,” J. Phys. B 34, 2561–2571 (2001).

Cariou, J.

C. Kieleck, B. Bousquet, G. Le Brun, J. Cariou, J. Lotrian, “Laser induced fluorescent imaging: application to groups of macroalgae identification,” J. Phys. B 34, 2561–2571 (2001).

Christian, G. D.

I. M. Warner, G. D. Christian, E. R. Davidson, “Analysis of multicomponent fluorescence data,” Anal. Chem. 49, 564–573 (1977).
[CrossRef]

Cooper, G. A.

R. D. Jiji, G. A. Cooper, K. S. Booksh, “Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic and aromatic hydrocarbons,” Anal. Chim. Acta 397, 61–72 (1999).
[CrossRef]

Dasari, R. R.

Davidson, E. R.

I. M. Warner, G. D. Christian, E. R. Davidson, “Analysis of multicomponent fluorescence data,” Anal. Chem. 49, 564–573 (1977).
[CrossRef]

Durkin, A.

Fan, J.

Feld, M. S.

R. A. Zangaro, L. Silveira, R. Manochoran, G. Zonios, I. Itzkan, R. R. Dasari, J. Van Dam, M. S. Feld, “Rapid multiexcitation fluorescent spectroscopy for in vivo tissue diagnostics,” Appl. Opt. 35, 5211–5219 (1996).
[CrossRef]

R. Richard-Kortum, L. Tong, M. S. Feld, “Spectral diagnosis of diseased tissue,” U.S. patent5,421,337 (6June1995).

P. R. Rava, R. Richards-Kortum, M. S. Feld, J. J. Baraga, “Contour mapping of spectral diagnostics,” U.S. patent5,345,941 (13April1993).

Folestad, S.

Fuchs, H.

Furlan, R. J.

C. D. Tran, R. J. Furlan, “Spectrofluorometer based on acousto-optics tunable filter for rapid scanning of multicomponent sample analysis,” Anal. Chem. 65, 1675–1681 (1993).
[CrossRef] [PubMed]

Gastellu-Etchegorry, J.

J. Romier, J. Selves, J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998).
[CrossRef]

Gillenwater, A.

Harilal, S. S.

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, C. P. G. Vallbhan, “Solvent effect on absolute fluorescence quantum yield of Rhodamine 6G determined using transient thermal lens technique,” Mod. Phys. Lett. B 13, 563–574 (1999).
[CrossRef]

Hart, S. J.

S. J. Hart, R. D. Jiji, “Light emitting diode excitation emission matrix fluorescence spectroscopy,” Analyst 127, 1693–1699 (2002).
[CrossRef]

Hoyt, C. C.

Itzkan, I.

Jacob, R.

Jiji, R. D.

S. J. Hart, R. D. Jiji, “Light emitting diode excitation emission matrix fluorescence spectroscopy,” Analyst 127, 1693–1699 (2002).
[CrossRef]

R. D. Jiji, G. A. Cooper, K. S. Booksh, “Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic and aromatic hydrocarbons,” Anal. Chim. Acta 397, 61–72 (1999).
[CrossRef]

Kemp, B.

Kenny, J. E.

J. E. Kenny, “Laser fluorescence EEM probe for cone penetrometer pollution analysis,” EPA/600/R-99/041 (U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C., 1999).

Kieleck, C.

C. Kieleck, B. Bousquet, G. Le Brun, J. Cariou, J. Lotrian, “Laser induced fluorescent imaging: application to groups of macroalgae identification,” J. Phys. B 34, 2561–2571 (2001).

Larson, A. P.

Le Brun, G.

C. Kieleck, B. Bousquet, G. Le Brun, J. Cariou, J. Lotrian, “Laser induced fluorescent imaging: application to groups of macroalgae identification,” J. Phys. B 34, 2561–2571 (2001).

Levin, I. W.

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74, 2021–2028 (2002).
[CrossRef] [PubMed]

Lewis, E. N.

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74, 2021–2028 (2002).
[CrossRef] [PubMed]

Lotrian, J.

C. Kieleck, B. Bousquet, G. Le Brun, J. Cariou, J. Lotrian, “Laser induced fluorescent imaging: application to groups of macroalgae identification,” J. Phys. B 34, 2561–2571 (2001).

Lovern, M. G.

S. D. Russell, R. L. Shimabukuro, A. D. Ramirez, M. G. Lovern, “Surface plasmon tunable filter for multiband spectral imaging,” in SPAWAR Systems Center Biennial Review (Space and Naval Warfare Systems Center, San Diego, Calif., 2001), pp. 117–121.

Manochoran, R.

Morris, H. R.

Muroski, A. R.

A. R. Muroski, K. S. Booksh, M. L. Myrick, “Single measurement excitation emission matrix spectrofluometer for determination of hydrocarbons in ocean water,” Anal. Chem. 68, 3534–3538 (1996).
[CrossRef]

Myrick, M. L.

A. R. Muroski, K. S. Booksh, M. L. Myrick, “Single measurement excitation emission matrix spectrofluometer for determination of hydrocarbons in ocean water,” Anal. Chem. 68, 3534–3538 (1996).
[CrossRef]

Nampoori, V. P. N.

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, C. P. G. Vallbhan, “Solvent effect on absolute fluorescence quantum yield of Rhodamine 6G determined using transient thermal lens technique,” Mod. Phys. Lett. B 13, 563–574 (1999).
[CrossRef]

Ramirez, A. D.

S. D. Russell, R. L. Shimabukuro, A. D. Ramirez, M. G. Lovern, “Surface plasmon tunable filter for multiband spectral imaging,” in SPAWAR Systems Center Biennial Review (Space and Naval Warfare Systems Center, San Diego, Calif., 2001), pp. 117–121.

Rava, P. R.

P. R. Rava, R. Richards-Kortum, M. S. Feld, J. J. Baraga, “Contour mapping of spectral diagnostics,” U.S. patent5,345,941 (13April1993).

Richard-Kortum, R.

R. Richard-Kortum, L. Tong, M. S. Feld, “Spectral diagnosis of diseased tissue,” U.S. patent5,421,337 (6June1995).

Richards-Kortum, R.

P. R. Rava, R. Richards-Kortum, M. S. Feld, J. J. Baraga, “Contour mapping of spectral diagnostics,” U.S. patent5,345,941 (13April1993).

Richards-Kortum, R. R.

Romier, J.

J. Romier, J. Selves, J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998).
[CrossRef]

Russell, S. D.

S. D. Russell, R. L. Shimabukuro, A. D. Ramirez, M. G. Lovern, “Surface plasmon tunable filter for multiband spectral imaging,” in SPAWAR Systems Center Biennial Review (Space and Naval Warfare Systems Center, San Diego, Calif., 2001), pp. 117–121.

Schaeberle, M. D.

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74, 2021–2028 (2002).
[CrossRef] [PubMed]

Selves, J.

J. Romier, J. Selves, J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998).
[CrossRef]

Shimabukuro, R. L.

S. D. Russell, R. L. Shimabukuro, A. D. Ramirez, M. G. Lovern, “Surface plasmon tunable filter for multiband spectral imaging,” in SPAWAR Systems Center Biennial Review (Space and Naval Warfare Systems Center, San Diego, Calif., 2001), pp. 117–121.

Silveira, L.

Tong, L.

R. Richard-Kortum, L. Tong, M. S. Feld, “Spectral diagnosis of diseased tissue,” U.S. patent5,421,337 (6June1995).

Tran, C. D.

C. D. Tran, R. J. Furlan, “Spectrofluorometer based on acousto-optics tunable filter for rapid scanning of multicomponent sample analysis,” Anal. Chem. 65, 1675–1681 (1993).
[CrossRef] [PubMed]

Treado, P. J.

Utzinger, U.

Vallbhan, C. P. G.

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, C. P. G. Vallbhan, “Solvent effect on absolute fluorescence quantum yield of Rhodamine 6G determined using transient thermal lens technique,” Mod. Phys. Lett. B 13, 563–574 (1999).
[CrossRef]

Van Dam, J.

Walt, D. R.

K. J. Albert, D. R. Walt, “High-speed fluorescence detection of explosives-like vapors,” Anal. Chem. 72, 1947–1955 (2000).
[CrossRef] [PubMed]

Warner, I. M.

I. M. Warner, G. D. Christian, E. R. Davidson, “Analysis of multicomponent fluorescence data,” Anal. Chem. 49, 564–573 (1977).
[CrossRef]

Zangaro, R. A.

Zonios, G.

Zuluaga, A.

Zuzak, K. J.

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74, 2021–2028 (2002).
[CrossRef] [PubMed]

Anal. Chem. (5)

I. M. Warner, G. D. Christian, E. R. Davidson, “Analysis of multicomponent fluorescence data,” Anal. Chem. 49, 564–573 (1977).
[CrossRef]

K. J. Albert, D. R. Walt, “High-speed fluorescence detection of explosives-like vapors,” Anal. Chem. 72, 1947–1955 (2000).
[CrossRef] [PubMed]

A. R. Muroski, K. S. Booksh, M. L. Myrick, “Single measurement excitation emission matrix spectrofluometer for determination of hydrocarbons in ocean water,” Anal. Chem. 68, 3534–3538 (1996).
[CrossRef]

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74, 2021–2028 (2002).
[CrossRef] [PubMed]

C. D. Tran, R. J. Furlan, “Spectrofluorometer based on acousto-optics tunable filter for rapid scanning of multicomponent sample analysis,” Anal. Chem. 65, 1675–1681 (1993).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

R. D. Jiji, G. A. Cooper, K. S. Booksh, “Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic and aromatic hydrocarbons,” Anal. Chim. Acta 397, 61–72 (1999).
[CrossRef]

Analyst (1)

S. J. Hart, R. D. Jiji, “Light emitting diode excitation emission matrix fluorescence spectroscopy,” Analyst 127, 1693–1699 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (2)

J. Phys. B (1)

C. Kieleck, B. Bousquet, G. Le Brun, J. Cariou, J. Lotrian, “Laser induced fluorescent imaging: application to groups of macroalgae identification,” J. Phys. B 34, 2561–2571 (2001).

Mod. Phys. Lett. B (1)

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, C. P. G. Vallbhan, “Solvent effect on absolute fluorescence quantum yield of Rhodamine 6G determined using transient thermal lens technique,” Mod. Phys. Lett. B 13, 563–574 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Romier, J. Selves, J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998).
[CrossRef]

Other (8)

DNA Technology Technical Bulletin, “Fluorescence excitation and emission,” www.idtdna.com/program/techbulletins/Fluorescent_Dye_Labeled_Oligonucleotides.asp .

J. E. Kenny, “Laser fluorescence EEM probe for cone penetrometer pollution analysis,” EPA/600/R-99/041 (U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C., 1999).

S. D. Russell, R. L. Shimabukuro, A. D. Ramirez, M. G. Lovern, “Surface plasmon tunable filter for multiband spectral imaging,” in SPAWAR Systems Center Biennial Review (Space and Naval Warfare Systems Center, San Diego, Calif., 2001), pp. 117–121.

P. A. Jansson, ed., Deconvolution with Applications in Spectroscopy (Academic, New York, 1984), p. 342.

See calculations of the throughput of a monochromator, Oriel manual (Oriel Instruments, Stratford, Conn., 2003), pp. 4–13.

P. R. Rava, R. Richards-Kortum, M. S. Feld, J. J. Baraga, “Contour mapping of spectral diagnostics,” U.S. patent5,345,941 (13April1993).

SPEX-3D from Jobin-Yvon, information available at http://www.jobinyvon.co.uk/jy/fluorescence/fluorescence.htm# .

R. Richard-Kortum, L. Tong, M. S. Feld, “Spectral diagnosis of diseased tissue,” U.S. patent5,421,337 (6June1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of the LIF-based EEF.

Fig. 2
Fig. 2

Calibration curves for two LIFs used in the experiments.

Fig. 3
Fig. 3

Spectral distribution of the excitation LIF.

Fig. 4
Fig. 4

Excitation and emission spectra of a 10-8-M solution of Rhodamine 6G obtained with the EEF.

Fig. 5
Fig. 5

EE spectrum of a 10-9-M Rhodamine 6G solution obtained with the EEF.

Fig. 6
Fig. 6

Two Cy3 dye emission spectra. Dashed curve: monochromator scan of the dye excited by a laser. Solid curve: excitation and detection by two LIFs with our EEF.

Fig. 7
Fig. 7

EE spectra of mixtures of Cy2 and Cy3 dyes: (a) concentration ratio 10 to 1 and (b) concentration ratio 1 to 6.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NF/NI=Φnσd.

Metrics