Abstract

We report on the development of an optical-fiber-based diagnostic tool with which to determine the local optical properties of a turbid medium. By using a single fiber in contact with the medium to deliver and detect white light, we have optimized the probability of detection of photons scattered from small depths. The contribution of scattered light from greater depths to the signal is measured and subtracted with an additional fiber, i.e., a collection fiber, to yield a differential backscatter signal. Phantoms demonstrate that, when photons have large mean free paths compared with the fiber diameter, single scattering dominates the differential backscatter signal. When photons have small mean free paths compared with the fiber diameter, the apparent path length of the photons that contribute to the differential backscatter signal becomes approximately equal to 4/5 of the fiber diameter. This effect is nearly independent of the optical properties of the sample under investigation.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994).
  2. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  3. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
    [CrossRef] [PubMed]
  4. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
    [CrossRef]
  5. A. Amelink, M. P. L. Bard, J. A. Burgers, H. J. C. M. Sterenborg, “Single scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media,” Appl. Opt. 42, 4095–4101 (2003).
    [CrossRef] [PubMed]
  6. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  7. L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  8. L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141–150 (1997).
    [CrossRef]
  9. A. J. Welch, M. J. C. van Gemert, eds., Optical-Thermal Response of Laser Irradiated Tissue (Plenum, New York, 1995), pp. 280–300.
  10. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
    [CrossRef]
  11. N. Ghosh, S. K. Mohanty, S. K. Majumder, P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt. 40, 176–184 (2001).
    [CrossRef]
  12. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
    [CrossRef] [PubMed]
  13. J. Qu, C. MacAulay, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994).
    [CrossRef] [PubMed]
  14. J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21, 546–548 (1996).
    [CrossRef] [PubMed]
  15. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef] [PubMed]
  16. M. Canpolat, J. R. Mourant, “Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light,” Appl. Opt. 40, 3792–3799 (2001).
    [CrossRef]
  17. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
    [CrossRef] [PubMed]

2003 (1)

2001 (2)

1999 (2)

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[CrossRef]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (4)

1996 (1)

1995 (1)

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Amelink, A.

Anderson, E. R.

Backman, V.

Bard, M. P. L.

Bigio, I. J.

Boyer, J.

Brenner, M.

Burgers, J. A.

Canpolat, M.

Coquoz, O.

Cotran, R. S.

R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994).

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Eick, A. A.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Feld, M. S.

Fishkin, J. B.

Fitzmaurice, M.

Freyer, J. P.

Fuselier, T.

Ghosh, N.

Gupta, P. K.

Hielscher, A. H.

Jack, D. A.

Jacques, S. L.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141–150 (1997).
[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Johnson, T. M.

Kumar, V.

R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994).

Lam, S.

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

MacAulay, C.

Majumder, S. K.

Manoharan, R.

Miller, H. D.

Mohanty, S. K.

Mourant, J. R.

Palcic, B.

Patterson, M. S.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Perelman, L. T.

Qu, J.

Robbins, S. L.

R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994).

Shen, D.

Sterenborg, H. J. C. M.

A. Amelink, M. P. L. Bard, J. A. Burgers, H. J. C. M. Sterenborg, “Single scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media,” Appl. Opt. 42, 4095–4101 (2003).
[CrossRef] [PubMed]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Tromberg, B. J.

Van Dam, J.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Wang, L.-H.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141–150 (1997).
[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Wilson, B. C.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Zheng, L.-Q.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141–150 (1997).
[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Zonios, G.

Appl. Opt. (9)

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[CrossRef]

N. Ghosh, S. K. Mohanty, S. K. Majumder, P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt. 40, 176–184 (2001).
[CrossRef]

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

M. Canpolat, J. R. Mourant, “Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light,” Appl. Opt. 40, 3792–3799 (2001).
[CrossRef]

A. Amelink, M. P. L. Bard, J. A. Burgers, H. J. C. M. Sterenborg, “Single scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media,” Appl. Opt. 42, 4095–4101 (2003).
[CrossRef] [PubMed]

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994).
[CrossRef] [PubMed]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed. (2)

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141–150 (1997).
[CrossRef]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Other (3)

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

A. J. Welch, M. J. C. van Gemert, eds., Optical-Thermal Response of Laser Irradiated Tissue (Plenum, New York, 1995), pp. 280–300.

R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Monte Carlo (MC) simulation showing Lambert-Beer behavior with an apparent path length that depends only on the fiber diameter. Open circles and dashed curves, d fiber = 200 μm; filled circles and dotted curves, d fiber = 400 μm; open squares and solid curves, d fiber = 600 μm; filled squares and dashed-dotted curves d fiber = 800 μm.

Fig. 3
Fig. 3

Monte Carlo (MC) simulation normalized at zero absorption. Open circles, d fiber = 200 μm; filled squares, d fiber = 800 μm. (Results for d fiber = 400, 600 μm have been omitted for graphical clarity.)

Fig. 4
Fig. 4

Measurement (data points) and calculation (solid curve) of single backscattering from 0.2-μm polystyrene spheres in water.

Fig. 5
Fig. 5

Differential reflectance signal R exp for suspensions of 1.0-μm polystyrene spheres with four different concentrations: solid curve, 2.6% spheres; dotted curve, 1.3% spheres; dashed curve, 0.65% spheres; dashed-dotted curve, 0.38% spheres.

Fig. 6
Fig. 6

Typical spectra measured in suspensions of 1.0-μm polystyrene spheres with and without Evans Blue dye (μ a = 2, 0 mm-1, respectively, at 600 nm). The dashed curve shows a calculation according to Eq. (5) with τ = 0.32 mm.

Fig. 7
Fig. 7

Apparent differential path length as a function of the scattering coefficient at 600 nm. Filled circles, data points; the solid curve, to twice the mfp; dotted line, τ = 0.32 mm; dashed line, predictions of the Monte Carlo simulations (τ = 0.29 mm).

Fig. 8
Fig. 8

Typical spectra for suspensions of 0.5-μm polystyrene spheres with scattering coefficient 35 mm-1 and absorption coefficients 0.00, 0.75, and 1.50 mm-1 at 600 nm. To prevent curve crossings the dc-fiber signal I dc has been plotted on a different vertical scale from c-fiber signal J c and differential reflectance signal R.

Fig. 9
Fig. 9

Area A* under the absorption curve as a function of absorber concentration.

Tables (1)

Tables Icon

Table 1 Results of the Monte Carlo Simulationsa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Rexp=cI-InIwhite-Iblack-JJwhite-JblackcIdc-Jc.
Rsingle=Capp14πΩN.A.dΩpΩQscaρA,
RsingleCapp14π02πdϕ π-N.A.πdθ sinθp180μs=Cappp180μs,
RMC=C1μs exp-τμa=C1μs exp-C2dfiberμa.
Rexpμα=Rexp0expτμα=Rexp0exp-τρμαspec,EB,
A=-lnREB/R0=τρμaspec,EB.
R=C1μs exp-0.8dfiberμa.

Metrics