Abstract

We report on multidistance time-resolved diffuse reflectance spectroscopy of the head of a healthy adult after intravenous administration of a bolus of indocyanine green. Intracerebral and extracerebral changes in absorption are deduced from moments (integral, mean time of flight, and variance) of the distributions of times of flight of photons (DTOFs), recorded simultaneously at four different source-detector separations. We calculate the sensitivity factors converting depth-dependent changes in absorption into changes of moments of DTOFs by Monte Carlo simulations by using a layered model of the head. We validate our method by analyzing moments of DTOFs simulated for the assumed changes in absorption in different layers of the head model.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
    [CrossRef]
  2. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, H. Rinneberg, “Determining changes in NIR absorption by using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
    [CrossRef] [PubMed]
  3. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  4. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis of the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
    [CrossRef] [PubMed]
  5. A. H. Hielscher, H. Liu, B. Chance, F. K. Tittel, S. L. Jacques, “Time-resolved photon emission from layered turbid media,” Appl. Opt. 35, 719–728 (1996).
    [CrossRef] [PubMed]
  6. T. J. Farrell, M. S. Patterson, M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998).
    [CrossRef]
  7. A. Kienle, T. Glanzmann, G. Wagnieres, H. van den Bergh, “Investigation of two-layered turbid media with time-resolved reflectance,” Appl. Opt. 37, 6852–6862 (1998).
    [CrossRef]
  8. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998).
    [CrossRef]
  9. J. M. Tualle, J. Prat, E. Tinet, S. Avrillier, “Real-space Green’s function calculation for the solution of the diffusion equation in stratified turbid media,” J. Opt. Soc. Am. A 17, 2046–2055 (2000).
    [CrossRef]
  10. F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
    [CrossRef]
  11. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
    [CrossRef] [PubMed]
  12. V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near-infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
    [CrossRef]
  13. P. W. McCormick, M. Stewart, G. Lewis, M. Dujovny, J. I. Ausman, “Intracerebral penetration of infrared light,” J. Neurosurg. 76, 315–318 (1992).
    [CrossRef] [PubMed]
  14. W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow and Metab. 18, 445–456 (1998).
    [CrossRef]
  15. R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
    [CrossRef] [PubMed]
  16. T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, S. Onishi, “Estimation of regional cerebral blood flow distribution in infants by near-infrared topography using indocyanine green,” Neuroimage 13, 944–952 (2001).
    [CrossRef] [PubMed]
  17. F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14, 218–222 (2002).
    [CrossRef] [PubMed]
  18. R. Boushel, H. Langberg, J. Olesen, M. Nowak, L. Simonsen, J. Bülow, M. Kjær, “Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green,” J. Appl. Physiol. 89, 1868–1878 (2000).
    [PubMed]
  19. P. Hopton, T. S. Walsh, A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol. 87, 1981–1987 (1999).
    [PubMed]
  20. M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7, 464–470 (2002).
    [CrossRef] [PubMed]
  21. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
    [CrossRef] [PubMed]
  22. M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
    [CrossRef] [PubMed]
  23. J. Steinbrink, “Near-infrared-spectroscopy on the adult human head with picosecond resolution” (in German), Ph.D. dissertation (Free University, Berlin, Germany, 2000).
  24. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, H. Rinneberg, “Evaluation of optical properties of highly scattering media using moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
    [CrossRef] [PubMed]
  25. A. Liebert, H. Wabnitz, D. Grosenick, R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
    [CrossRef] [PubMed]
  26. M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
    [PubMed]

2003 (3)

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
[CrossRef]

A. Liebert, H. Wabnitz, D. Grosenick, R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, H. Rinneberg, “Evaluation of optical properties of highly scattering media using moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[CrossRef] [PubMed]

2002 (2)

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14, 218–222 (2002).
[CrossRef] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7, 464–470 (2002).
[CrossRef] [PubMed]

2001 (3)

R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
[CrossRef] [PubMed]

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, S. Onishi, “Estimation of regional cerebral blood flow distribution in infants by near-infrared topography using indocyanine green,” Neuroimage 13, 944–952 (2001).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, H. Rinneberg, “Determining changes in NIR absorption by using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

2000 (2)

R. Boushel, H. Langberg, J. Olesen, M. Nowak, L. Simonsen, J. Bülow, M. Kjær, “Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green,” J. Appl. Physiol. 89, 1868–1878 (2000).
[PubMed]

J. M. Tualle, J. Prat, E. Tinet, S. Avrillier, “Real-space Green’s function calculation for the solution of the diffusion equation in stratified turbid media,” J. Opt. Soc. Am. A 17, 2046–2055 (2000).
[CrossRef]

1999 (2)

P. Hopton, T. S. Walsh, A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol. 87, 1981–1987 (1999).
[PubMed]

V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near-infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
[CrossRef]

1998 (6)

1997 (1)

1996 (1)

1993 (1)

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

1992 (2)

P. W. McCormick, M. Stewart, G. Lewis, M. Dujovny, J. I. Ausman, “Intracerebral penetration of infrared light,” J. Neurosurg. 76, 315–318 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis of the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

1989 (1)

1976 (1)

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

Arridge, S. R.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis of the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Ausman, J. I.

P. W. McCormick, M. Stewart, G. Lewis, M. Dujovny, J. I. Ausman, “Intracerebral penetration of infrared light,” J. Neurosurg. 76, 315–318 (1992).
[CrossRef] [PubMed]

Avrillier, S.

Bays, R.

Boushel, R.

R. Boushel, H. Langberg, J. Olesen, M. Nowak, L. Simonsen, J. Bülow, M. Kjær, “Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green,” J. Appl. Physiol. 89, 1868–1878 (2000).
[PubMed]

Bülow, J.

R. Boushel, H. Langberg, J. Olesen, M. Nowak, L. Simonsen, J. Bülow, M. Kjær, “Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green,” J. Appl. Physiol. 89, 1868–1878 (2000).
[PubMed]

Chance, B.

Cope, M.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14, 218–222 (2002).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis of the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Del Bianco, S.

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
[CrossRef]

Delpy, D. T.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14, 218–222 (2002).
[CrossRef] [PubMed]

R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis of the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Dögnitz, N.

Dujovny, M.

P. W. McCormick, M. Stewart, G. Lewis, M. Dujovny, J. I. Ausman, “Intracerebral penetration of infrared light,” J. Neurosurg. 76, 315–318 (1992).
[CrossRef] [PubMed]

Elwell, C. E.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14, 218–222 (2002).
[CrossRef] [PubMed]

Essenpreis, M.

T. J. Farrell, M. S. Patterson, M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998).
[CrossRef]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Fantini, S.

Farrell, T. J.

Firbank, M.

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Franceschini, M. A.

Glanzmann, T.

Goetz, A. E.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow and Metab. 18, 445–456 (1998).
[CrossRef]

Goldstone, J. C.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14, 218–222 (2002).
[CrossRef] [PubMed]

Gora, F.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14, 218–222 (2002).
[CrossRef] [PubMed]

Gratton, E.

Grosenick, D.

A. Liebert, H. Wabnitz, D. Grosenick, R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, H. Rinneberg, “Evaluation of optical properties of highly scattering media using moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[CrossRef] [PubMed]

Habler, O.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow and Metab. 18, 445–456 (1998).
[CrossRef]

Hielscher, A. H.

Hiraoka, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Hopton, P.

P. Hopton, T. S. Walsh, A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol. 87, 1981–1987 (1999).
[PubMed]

Isobe, K.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, S. Onishi, “Estimation of regional cerebral blood flow distribution in infants by near-infrared topography using indocyanine green,” Neuroimage 13, 944–952 (2001).
[CrossRef] [PubMed]

Itoh, S.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, S. Onishi, “Estimation of regional cerebral blood flow distribution in infants by near-infrared topography using indocyanine green,” Neuroimage 13, 944–952 (2001).
[CrossRef] [PubMed]

Jacques, S. L.

Kienle, A.

Kjær, M.

R. Boushel, H. Langberg, J. Olesen, M. Nowak, L. Simonsen, J. Bülow, M. Kjær, “Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green,” J. Appl. Physiol. 89, 1868–1878 (2000).
[PubMed]

Kleen, M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow and Metab. 18, 445–456 (1998).
[CrossRef]

Kohl-Bareis, M.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7, 464–470 (2002).
[CrossRef] [PubMed]

Kondo, M.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, S. Onishi, “Estimation of regional cerebral blood flow distribution in infants by near-infrared topography using indocyanine green,” Neuroimage 13, 944–952 (2001).
[CrossRef] [PubMed]

Kuebler, W. M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow and Metab. 18, 445–456 (1998).
[CrossRef]

Kuhnle, G. E. H.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow and Metab. 18, 445–456 (1998).
[CrossRef]

Kusaka, T.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, S. Onishi, “Estimation of regional cerebral blood flow distribution in infants by near-infrared topography using indocyanine green,” Neuroimage 13, 944–952 (2001).
[CrossRef] [PubMed]

Kwant, G.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

Landsman, M. L. J.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

Langberg, H.

R. Boushel, H. Langberg, J. Olesen, M. Nowak, L. Simonsen, J. Bülow, M. Kjær, “Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green,” J. Appl. Physiol. 89, 1868–1878 (2000).
[PubMed]

Lee, A.

P. Hopton, T. S. Walsh, A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol. 87, 1981–1987 (1999).
[PubMed]

Lewis, G.

P. W. McCormick, M. Stewart, G. Lewis, M. Dujovny, J. I. Ausman, “Intracerebral penetration of infrared light,” J. Neurosurg. 76, 315–318 (1992).
[CrossRef] [PubMed]

Liebert, A.

A. Liebert, H. Wabnitz, D. Grosenick, R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, H. Rinneberg, “Evaluation of optical properties of highly scattering media using moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[CrossRef] [PubMed]

Liu, H.

Ma, X. H.

V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near-infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
[CrossRef]

Macdonald, R.

A. Liebert, H. Wabnitz, D. Grosenick, R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, H. Rinneberg, “Evaluation of optical properties of highly scattering media using moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[CrossRef] [PubMed]

Maier, J. S.

Malak, J.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7, 464–470 (2002).
[CrossRef] [PubMed]

Martelli, F.

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
[CrossRef]

McCormick, P. W.

P. W. McCormick, M. Stewart, G. Lewis, M. Dujovny, J. I. Ausman, “Intracerebral penetration of infrared light,” J. Neurosurg. 76, 315–318 (1992).
[CrossRef] [PubMed]

Messmer, K.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow and Metab. 18, 445–456 (1998).
[CrossRef]

Möller, M.

Mook, G. A.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

Nagano, K.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, S. Onishi, “Estimation of regional cerebral blood flow distribution in infants by near-infrared topography using indocyanine green,” Neuroimage 13, 944–952 (2001).
[CrossRef] [PubMed]

Nowak, M.

R. Boushel, H. Langberg, J. Olesen, M. Nowak, L. Simonsen, J. Bülow, M. Kjær, “Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green,” J. Appl. Physiol. 89, 1868–1878 (2000).
[PubMed]

Ntziachristos, V.

V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near-infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
[CrossRef]

Obrig, H.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7, 464–470 (2002).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, H. Rinneberg, “Determining changes in NIR absorption by using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

Okada, E.

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

Okubo, K.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, S. Onishi, “Estimation of regional cerebral blood flow distribution in infants by near-infrared topography using indocyanine green,” Neuroimage 13, 944–952 (2001).
[CrossRef] [PubMed]

Olesen, J.

R. Boushel, H. Langberg, J. Olesen, M. Nowak, L. Simonsen, J. Bülow, M. Kjær, “Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green,” J. Appl. Physiol. 89, 1868–1878 (2000).
[PubMed]

Onishi, S.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, S. Onishi, “Estimation of regional cerebral blood flow distribution in infants by near-infrared topography using indocyanine green,” Neuroimage 13, 944–952 (2001).
[CrossRef] [PubMed]

Patterson, M. S.

Paunescu, L. A.

Prat, J.

Rinneberg, H.

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, H. Rinneberg, “Evaluation of optical properties of highly scattering media using moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, H. Rinneberg, “Determining changes in NIR absorption by using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

Sakata, Y.

R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
[CrossRef] [PubMed]

Sassaroli, A.

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
[CrossRef]

Schweiger, M.

Sckell, A.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow and Metab. 18, 445–456 (1998).
[CrossRef]

Shinde, S.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14, 218–222 (2002).
[CrossRef] [PubMed]

Simonsen, L.

R. Boushel, H. Langberg, J. Olesen, M. Nowak, L. Simonsen, J. Bülow, M. Kjær, “Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green,” J. Appl. Physiol. 89, 1868–1878 (2000).
[PubMed]

Smith, M.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14, 218–222 (2002).
[CrossRef] [PubMed]

Springett, R.

R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
[CrossRef] [PubMed]

Steinbrink, J.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7, 464–470 (2002).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, H. Rinneberg, “Determining changes in NIR absorption by using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

J. Steinbrink, “Near-infrared-spectroscopy on the adult human head with picosecond resolution” (in German), Ph.D. dissertation (Free University, Berlin, Germany, 2000).

Stewart, M.

P. W. McCormick, M. Stewart, G. Lewis, M. Dujovny, J. I. Ausman, “Intracerebral penetration of infrared light,” J. Neurosurg. 76, 315–318 (1992).
[CrossRef] [PubMed]

Tinet, E.

Tittel, F. K.

Tualle, J. M.

Uludag, K.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7, 464–470 (2002).
[CrossRef] [PubMed]

van den Bergh, H.

van der Zee, P.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Villringer, A.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7, 464–470 (2002).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, H. Rinneberg, “Determining changes in NIR absorption by using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

Wabnitz, H.

A. Liebert, H. Wabnitz, D. Grosenick, R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, H. Rinneberg, “Evaluation of optical properties of highly scattering media using moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, H. Rinneberg, “Determining changes in NIR absorption by using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

Wagnieres, G.

Wagnières, G.

Walsh, T. S.

P. Hopton, T. S. Walsh, A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol. 87, 1981–1987 (1999).
[PubMed]

Welte, M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow and Metab. 18, 445–456 (1998).
[CrossRef]

Wilson, B. C.

Yamada, Y.

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
[CrossRef]

Yasuda, S.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, S. Onishi, “Estimation of regional cerebral blood flow distribution in infants by near-infrared topography using indocyanine green,” Neuroimage 13, 944–952 (2001).
[CrossRef] [PubMed]

Yodh, A. G.

V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near-infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
[CrossRef]

Zaccanti, G.

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
[CrossRef]

Zijlstra, W. G.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

Appl. Opt. (8)

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998).
[CrossRef]

A. Kienle, T. Glanzmann, G. Wagnieres, H. van den Bergh, “Investigation of two-layered turbid media with time-resolved reflectance,” Appl. Opt. 37, 6852–6862 (1998).
[CrossRef]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[CrossRef]

A. H. Hielscher, H. Liu, B. Chance, F. K. Tittel, S. L. Jacques, “Time-resolved photon emission from layered turbid media,” Appl. Opt. 35, 719–728 (1996).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998).
[CrossRef]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, H. Rinneberg, “Evaluation of optical properties of highly scattering media using moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[CrossRef] [PubMed]

J. Appl. Physiol. (3)

R. Boushel, H. Langberg, J. Olesen, M. Nowak, L. Simonsen, J. Bülow, M. Kjær, “Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green,” J. Appl. Physiol. 89, 1868–1878 (2000).
[PubMed]

P. Hopton, T. S. Walsh, A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol. 87, 1981–1987 (1999).
[PubMed]

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

J. Biomed. Opt. (2)

A. Liebert, H. Wabnitz, D. Grosenick, R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
[CrossRef] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7, 464–470 (2002).
[CrossRef] [PubMed]

J. Cereb. Blood Flow and Metab. (1)

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow and Metab. 18, 445–456 (1998).
[CrossRef]

J. Neurosurg. (1)

P. W. McCormick, M. Stewart, G. Lewis, M. Dujovny, J. I. Ausman, “Intracerebral penetration of infrared light,” J. Neurosurg. 76, 315–318 (1992).
[CrossRef] [PubMed]

J. Neurosurg. Anesthesiol. (1)

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14, 218–222 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Neuroimage (2)

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, S. Onishi, “Estimation of regional cerebral blood flow distribution in infants by near-infrared topography using indocyanine green,” Neuroimage 13, 944–952 (2001).
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol. (4)

R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, H. Rinneberg, “Determining changes in NIR absorption by using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis of the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Phys. Rev. E (1)

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

V. Ntziachristos, X. H. Ma, A. G. Yodh, B. Chance, “Multichannel photon counting instrument for spatially resolved near-infrared spectroscopy,” Rev. Sci. Instrum. 70, 193–201 (1999).
[CrossRef]

Other (1)

J. Steinbrink, “Near-infrared-spectroscopy on the adult human head with picosecond resolution” (in German), Ph.D. dissertation (Free University, Berlin, Germany, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Head model consisting of nine homogeneous layers (indexed by j) of the same thickness (2 mm), located at a depth of z = 2(j - 1) mm, covering a semi-infinite homogeneous bottom compartment (j = 10). Also shown are the schematic trajectories of three photon bundles (indexed by i) leaving the top layer at the same location separated from the source by r (source-detector separation). (b) Corresponding distribution of the times of flight of photons with N k being the number of photon counts in the kth time channel t k t < t k+1. The times of flight of the three photon bundles considered are indicated.

Fig. 2
Fig. 2

Sensitivity factors of the layer j of the head model (Fig. 1) versus source-detector separation r: *, j = 1; ○, j = 3; □, j = 5; ◇, j = 7; △, j = 9. (a) Mean partial path length MPP j [Eq. (2)]; (b) time-dependent mean partial path length TMPP j [Eq. (4)] versus total time of flight t k at source-detector separation r = 20 mm (for comparison with MPP j ); (c) mean-time-of-flight sensitivity factor MTSF j [Eq. (8)]; (d) variance sensitivity factor VSF j [Eq. (12)]. Sensitivity factors are calculated by Monte Carlo simulations for assumed homogeneous background optical properties μ a,j = 0.01 mm-1, μ s,j = 1 mm-1.

Fig. 3
Fig. 3

Sensitivity factors versus depth z = 2(j - 1) mm of the top nine layers at selected source-detector separations: *, MPP j ; ○, MTSF j ; □, VSF j . (a) r = 14 mm, (b) r = 26 mm, (c) r = 38 mm, (d) r = 50 mm. Data are taken from the same simulation as shown in Fig. 2. Each curve is normalized to its maximum value; curves are drawn to guide the eye.

Fig. 4
Fig. 4

Changes in moments (open symbols) versus source-detector separation r derived from simulated distributions of times of flight calculated after absorption is increased by 5% in the top 5 layers of the head model with homogeneous background optical properties, μ a0 = 0.01 mm-1 and μs0 = 1 mm-1: (a) change in attenuation ΔA(r) [Eq. (3)]; (b) change in mean time of flight Δ〈t〉(r) [Eq. (6)]; (c) change in variance ΔV(r) [Eq. (10)]; (d) change in time-dependent attenuation ΔA k [Eq. (5)] versus total time of flight t k at source-detector separation r = 20 mm. Solid curves, calculated by using corresponding sensitivity factors and an assumed increase in absorption (Δμ a,j = 0.0005 mm-1, j = 1, …, 5); vertical bars, standard deviations calculated according to Eqs. (14)–(17). (e) Change in absorption coefficient Δμ a,j versus depth of layer z = 2(j - 1) mm, reconstructed from *, ΔA(r); +, ΔA k ; □, Δ〈t〉(r); ☆, ΔV(r), and a combination of ○, ΔA(r), Δ〈t〉(r), ΔV(r). Solid line, assumed change in the absorption coefficient.

Fig. 5
Fig. 5

Same as Fig. 4 but for an assumed increase in absorption (Δμ a,j = 0.0005 mm-1, j = 6, …, 10) of the five bottom layers.

Fig. 6
Fig. 6

Schematic of the three-wavelength (687-, 803-, 826-nm) four-detection-channel time-domain NIRS instrument (DL, diode laser; PDL800, driver of diode lasers; PMT, photomultiplier tube; SPC134, TCSPC electronics; HV, high-voltage power supply).

Fig. 7
Fig. 7

Details of the detector box (one channel). The angular position of the rotary attenuator and the distance between the photocathode (PMT) and the output face of the fiber bundle are adjusted manually.

Fig. 8
Fig. 8

Full width at half-maximum of the instrumental response function, ■, versus the distance between the photocathode and the output face of the fiber bundle. Decrease in the overall photon collection efficiency, ○, expressed by the total number of photons N of the measured instrumental response normalized to the value N 0 obtained at a bundle-detector distance of 1 mm.

Fig. 9
Fig. 9

Changes in integral N tot [normalized by the initial value N tot(t = 0)] of the mean time of flight Δ〈t〉 and of the variance ΔV of the distributions of times of flight of photons versus time before and after injection of a bolus of ICG at t = 20 s. The DTOFs were measured on the head of a healthy volunteer at λ = 803 nm and at a source-detector separation of 3 cm. The moments are averaged over four consecutive injections: black curve, N tot; gray curve, Δ〈t〉; light gray curve, ΔV.

Fig. 10
Fig. 10

Same as Fig. 9 but at various source-detector separations r: (a) r = 1.5 cm, (b) r = 2.0 cm, (c) r = 2.5 cm, (d) r = 3.0 cm. The moments are rescaled by subtracting the minimum values and normalizing the resulting curves by their maxima: black curve, N tot; gray curve, Δ〈t〉; light gray curve, ΔV.

Fig. 11
Fig. 11

Changes (gray scale) of the absorption coefficient Δμ a in all (10) layers of the head model (Fig. 1) versus time before and after injection of a ICG bolus at t = 20 s. The Δμ a,j values were reconstructed from moments (attenuation, mean time of flight, variance) of DTOFs measured at λ = 803 nm and source-detector separations r = 1.5, 2.0, 2.5, and 3.0 cm (Fig. 10).

Fig. 12
Fig. 12

Same as Fig. 11 but averaging the changes in the absorption coefficient Δμ a over the top four layers (extracerebral compartment) and the remaining six bottom layers (intracerebral compartment).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Wi=W0,i exp-j lijμa,j,
MPPjr=ljr=i lijWii Wi.
ΔAr=-logNtot*rNtotrj MPPjrΔμa,j.
ti=j lij/cj
TMPPj,k=ljk=itkti<tk+1 lijWiitkti<tk+1 Wi.
ΔAk=-logNk*Nkj TMPPj,kΔμa,j.
Δtr=t*r-trj MTSFjrΔμa,j,
tr=i tiWii Wi
MTSFjr=-mljlmrcm+ljrtr,
ljlmr=i lijlimWii Wi.
ΔVr=V*r-Vrj VSFjrΔμa,j,
Vr=i ti2Wii Wi-t2r
VSFjr=-mnljlmlnrcmcn+2trmljlmrcm+ljrt2r-2t2r,
ljlmlnr=i lijlimlinWii Wi.
j |ljΔμa,j|1
j |ljΔμa,j|
j |ljΔμa,j|  1.
σΔAr=2N0tot1/2,
σΔAk=2N0k1/2,
σΔtr=k 2N0ktk-tr2 exp-2μactk1/2Ntot,
σΔVr=k 2N0ktk-tr2-Vr2 exp-2μactkNtot.

Metrics