Abstract

A concept for a measurement technique based on ellipsometry in conditions of total internal reflection is presented. When combined with surface plasmon resonance (SPR) effects, this technique becomes powerful for monitoring and analyzing adsorption and desorption on thin semitransparent metal films as well as for analyzing the semitransparent films themselves. We call this technique total internal reflection ellipsometry (TIRE). The theory of ellipsometry under total internal reflection combined with SPR is discussed for some simple cases. For more advanced cases and to prove the concept, simulations are performed with the Fresnel formalism. The use of TIRE is exemplified by applications in protein adsorption, corrosion monitoring, and adsorption from opaque liquids on metal surfaces. Simulations and experiments show greatly enhanced thin-film sensitivity compared with ordinary ellipsometry.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Collins, D. E. Aspnes, E. A. Irene, Thin Solid Films313–314 (1998).
  2. T. E. Tiwald, D. W. Thompson, J. A. Woolam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
    [CrossRef]
  3. S. Rekveld, Ellipsometric Studies of Protein Adsorption onto Hard Surfaces in a Flow Cell (Fedobruk, Enschede, 1997).
  4. M. Poksinski, H. Dzuho, J.-O. Järrhed, H. Arwin, “Total internal reflection ellipsometry,” in Proceedings of Eurosensors XIV, R. D. Reus, S. Bouwstra, eds. (Microelectronics Center, Copenhagen, 2000).
  5. P. Westphal, A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B 84, 278–282 (2002).
    [CrossRef]
  6. Total in this context refers to a situation in which the angle of incidence is larger then the critical angle (in the two-phase situation). If an interface layer is present, total internal reflection rarely occurs. In fact, at an SPR dip, total extinction of the p component may occur. However, to avoid confusion with IR ellipsometry, we prefer the acronym TIRE instead of IRE. Notice that when the angle of incidence is smaller than the critical angle this technique works as well, but there is no enhancement of sensitivity.
  7. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987).
  8. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
    [CrossRef]
  9. H. G. Tompkins, W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: a User’s Guide (Wiley, New York, 1999).
  10. E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23, 2135–2138 (1968).
  11. M. Poksinski, H. Dzuho, H. Arwin, “Copper corrosion monitoring with total internal reflection ellipsometry,” J. Electrochem. Soc. 150, B536–B539 (2003).
    [CrossRef]
  12. M. Poksinski, H. Arwin, “In situ monitoring of adsorption from milk on metal surfaces using total internal reflection ellipsometry,” Sens. Actuators B 94, 247–252 (2003).
    [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991).
  14. K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
    [CrossRef]
  15. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  16. A. Brecht, G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10, 923–936 (1995).
    [CrossRef] [PubMed]
  17. H. Raether, Surface Plasmons on Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  18. This selected thickness is close to the SPR-optimized thickness and was chosen only as an example. The best combination of thickness and angle of incidence can be determined by further simulations.
  19. The parameters for this simulation are set to match the settings necessary to generate the SPR effect.
  20. M. Poksinski, H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455-456C, 716–721 (2004).
    [CrossRef]
  21. J. Mårtensson, H. Arwin, H. Nygren, I. Lundström, “Adsorption and optical properties of ferritin layers on gold studied with spectroscopic ellipsometry,” J. Colloid Interface Sci. 174, 79–85 (1995).
    [CrossRef]

2004

M. Poksinski, H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455-456C, 716–721 (2004).
[CrossRef]

2003

M. Poksinski, H. Dzuho, H. Arwin, “Copper corrosion monitoring with total internal reflection ellipsometry,” J. Electrochem. Soc. 150, B536–B539 (2003).
[CrossRef]

M. Poksinski, H. Arwin, “In situ monitoring of adsorption from milk on metal surfaces using total internal reflection ellipsometry,” Sens. Actuators B 94, 247–252 (2003).
[CrossRef]

2002

P. Westphal, A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B 84, 278–282 (2002).
[CrossRef]

2000

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

1998

T. E. Tiwald, D. W. Thompson, J. A. Woolam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
[CrossRef]

1996

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[CrossRef]

1995

J. Mårtensson, H. Arwin, H. Nygren, I. Lundström, “Adsorption and optical properties of ferritin layers on gold studied with spectroscopic ellipsometry,” J. Colloid Interface Sci. 174, 79–85 (1995).
[CrossRef]

A. Brecht, G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10, 923–936 (1995).
[CrossRef] [PubMed]

1968

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23, 2135–2138 (1968).

Arwin, H.

M. Poksinski, H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455-456C, 716–721 (2004).
[CrossRef]

M. Poksinski, H. Dzuho, H. Arwin, “Copper corrosion monitoring with total internal reflection ellipsometry,” J. Electrochem. Soc. 150, B536–B539 (2003).
[CrossRef]

M. Poksinski, H. Arwin, “In situ monitoring of adsorption from milk on metal surfaces using total internal reflection ellipsometry,” Sens. Actuators B 94, 247–252 (2003).
[CrossRef]

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

J. Mårtensson, H. Arwin, H. Nygren, I. Lundström, “Adsorption and optical properties of ferritin layers on gold studied with spectroscopic ellipsometry,” J. Colloid Interface Sci. 174, 79–85 (1995).
[CrossRef]

M. Poksinski, H. Dzuho, J.-O. Järrhed, H. Arwin, “Total internal reflection ellipsometry,” in Proceedings of Eurosensors XIV, R. D. Reus, S. Bouwstra, eds. (Microelectronics Center, Copenhagen, 2000).

Aspnes, D. E.

R. W. Collins, D. E. Aspnes, E. A. Irene, Thin Solid Films313–314 (1998).

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987).

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987).

Bornmann, A.

P. Westphal, A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B 84, 278–282 (2002).
[CrossRef]

Brecht, A.

A. Brecht, G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10, 923–936 (1995).
[CrossRef] [PubMed]

Collins, R. W.

R. W. Collins, D. E. Aspnes, E. A. Irene, Thin Solid Films313–314 (1998).

Dzuho, H.

M. Poksinski, H. Dzuho, H. Arwin, “Copper corrosion monitoring with total internal reflection ellipsometry,” J. Electrochem. Soc. 150, B536–B539 (2003).
[CrossRef]

M. Poksinski, H. Dzuho, J.-O. Järrhed, H. Arwin, “Total internal reflection ellipsometry,” in Proceedings of Eurosensors XIV, R. D. Reus, S. Bouwstra, eds. (Microelectronics Center, Copenhagen, 2000).

Gauglitz, G.

A. Brecht, G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10, 923–936 (1995).
[CrossRef] [PubMed]

Irene, E. A.

R. W. Collins, D. E. Aspnes, E. A. Irene, Thin Solid Films313–314 (1998).

Järrhed, J.-O.

M. Poksinski, H. Dzuho, J.-O. Järrhed, H. Arwin, “Total internal reflection ellipsometry,” in Proceedings of Eurosensors XIV, R. D. Reus, S. Bouwstra, eds. (Microelectronics Center, Copenhagen, 2000).

Johansen, K.

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

Kretschmann, E.

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23, 2135–2138 (1968).

Liedberg, B.

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

Lundström, I.

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

J. Mårtensson, H. Arwin, H. Nygren, I. Lundström, “Adsorption and optical properties of ferritin layers on gold studied with spectroscopic ellipsometry,” J. Colloid Interface Sci. 174, 79–85 (1995).
[CrossRef]

Mårtensson, J.

J. Mårtensson, H. Arwin, H. Nygren, I. Lundström, “Adsorption and optical properties of ferritin layers on gold studied with spectroscopic ellipsometry,” J. Colloid Interface Sci. 174, 79–85 (1995).
[CrossRef]

McGahan, W. A.

H. G. Tompkins, W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: a User’s Guide (Wiley, New York, 1999).

Nygren, H.

J. Mårtensson, H. Arwin, H. Nygren, I. Lundström, “Adsorption and optical properties of ferritin layers on gold studied with spectroscopic ellipsometry,” J. Colloid Interface Sci. 174, 79–85 (1995).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991).

Pepper, S. V.

T. E. Tiwald, D. W. Thompson, J. A. Woolam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
[CrossRef]

Poksinski, M.

M. Poksinski, H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455-456C, 716–721 (2004).
[CrossRef]

M. Poksinski, H. Arwin, “In situ monitoring of adsorption from milk on metal surfaces using total internal reflection ellipsometry,” Sens. Actuators B 94, 247–252 (2003).
[CrossRef]

M. Poksinski, H. Dzuho, H. Arwin, “Copper corrosion monitoring with total internal reflection ellipsometry,” J. Electrochem. Soc. 150, B536–B539 (2003).
[CrossRef]

M. Poksinski, H. Dzuho, J.-O. Järrhed, H. Arwin, “Total internal reflection ellipsometry,” in Proceedings of Eurosensors XIV, R. D. Reus, S. Bouwstra, eds. (Microelectronics Center, Copenhagen, 2000).

Raether, H.

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23, 2135–2138 (1968).

H. Raether, Surface Plasmons on Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Rekveld, S.

S. Rekveld, Ellipsometric Studies of Protein Adsorption onto Hard Surfaces in a Flow Cell (Fedobruk, Enschede, 1997).

Schubert, M.

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[CrossRef]

Tiwald, T. E.

T. E. Tiwald, D. W. Thompson, J. A. Woolam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
[CrossRef]

Tompkins, H. G.

H. G. Tompkins, W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: a User’s Guide (Wiley, New York, 1999).

W. Thompson, D.

T. E. Tiwald, D. W. Thompson, J. A. Woolam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
[CrossRef]

Westphal, P.

P. Westphal, A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B 84, 278–282 (2002).
[CrossRef]

Woolam, J. A.

T. E. Tiwald, D. W. Thompson, J. A. Woolam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

Biosens. Bioelectron.

A. Brecht, G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10, 923–936 (1995).
[CrossRef] [PubMed]

J. Colloid Interface Sci.

J. Mårtensson, H. Arwin, H. Nygren, I. Lundström, “Adsorption and optical properties of ferritin layers on gold studied with spectroscopic ellipsometry,” J. Colloid Interface Sci. 174, 79–85 (1995).
[CrossRef]

J. Electrochem. Soc.

M. Poksinski, H. Dzuho, H. Arwin, “Copper corrosion monitoring with total internal reflection ellipsometry,” J. Electrochem. Soc. 150, B536–B539 (2003).
[CrossRef]

Phys. Rev. B

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[CrossRef]

Rev. Sci. Instrum.

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

Sens. Actuators B

M. Poksinski, H. Arwin, “In situ monitoring of adsorption from milk on metal surfaces using total internal reflection ellipsometry,” Sens. Actuators B 94, 247–252 (2003).
[CrossRef]

P. Westphal, A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B 84, 278–282 (2002).
[CrossRef]

Thin Solid Films

T. E. Tiwald, D. W. Thompson, J. A. Woolam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
[CrossRef]

M. Poksinski, H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455-456C, 716–721 (2004).
[CrossRef]

Z. Naturforsch.

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23, 2135–2138 (1968).

Other

R. W. Collins, D. E. Aspnes, E. A. Irene, Thin Solid Films313–314 (1998).

H. G. Tompkins, W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: a User’s Guide (Wiley, New York, 1999).

S. Rekveld, Ellipsometric Studies of Protein Adsorption onto Hard Surfaces in a Flow Cell (Fedobruk, Enschede, 1997).

M. Poksinski, H. Dzuho, J.-O. Järrhed, H. Arwin, “Total internal reflection ellipsometry,” in Proceedings of Eurosensors XIV, R. D. Reus, S. Bouwstra, eds. (Microelectronics Center, Copenhagen, 2000).

Total in this context refers to a situation in which the angle of incidence is larger then the critical angle (in the two-phase situation). If an interface layer is present, total internal reflection rarely occurs. In fact, at an SPR dip, total extinction of the p component may occur. However, to avoid confusion with IR ellipsometry, we prefer the acronym TIRE instead of IRE. Notice that when the angle of incidence is smaller than the critical angle this technique works as well, but there is no enhancement of sensitivity.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987).

E. D. Palik, Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991).

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

H. Raether, Surface Plasmons on Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

This selected thickness is close to the SPR-optimized thickness and was chosen only as an example. The best combination of thickness and angle of incidence can be determined by further simulations.

The parameters for this simulation are set to match the settings necessary to generate the SPR effect.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic view of the TIRE system. The magnification shows the index-matching liquid inserted between the prism and glass slide and the metal layer deposited on the other side of the glass slide (see text for details).

Fig. 2
Fig. 2

Top, internal and, bottom, external reflection at a plane boundary: ϕ c , angle of incidence over which the total internal reflection occurs; n 0, n 1, refractive indices of the media.

Fig. 3
Fig. 3

ψ and Δ versus angle of incidence for top, internal and, bottom, external reflection at a glass-air interface (n glass = 1.5; ϕ B , Brewster’s angle; ϕ c , critical angle).

Fig. 4
Fig. 4

Terms ψ and Δ versus the angle of incidence for top, internal and, bottom, external reflection at a glass-water interface with and without a 5-nm gold layer at the interface.

Fig. 5
Fig. 5

Terms ψ and Δ for a glass-water interface with a 50-nm gold film, top, versus the angle of incidence at a wavelength of 690 nm and, bottom, versus the wavelength at an angle of incidence of 68.5 deg.

Fig. 6
Fig. 6

Terms ψ and Δ for a glass-water interface with a 15.5-nm chromium film, top, versus the angle of incidence at a wavelength of 600 nm and, bottom, versus the wavelength at an angle of incidence of 76.5 deg.

Fig. 7
Fig. 7

Top, ψ and, bottom, Δ spectra at an angle of incidence of 68.5 deg under total internal reflection for a glass-gold layer-water interface without and with a dielectric layer (n = 1.45) 1, 10, and 20 nm thick.

Fig. 8
Fig. 8

Spectral variation in Δ before and after adsorption of ferritin at a protein concentration of 1 mg/ml at an angle of incidence of 65.6 deg (see text for details). PBS, phosphate-buffered saline.

Fig. 9
Fig. 9

Solid curves, Δ measured in the TIRE mode, A, before and, F, after several HCl exposures on a 30-nm copper layer on glass. Dashed curves, modeling in a five-phase model, which is described further in the text.

Fig. 10
Fig. 10

Evolution of the model-determined thickness of the three layers used to describe the copper film exposed to HCl: A, analysis before HCl exposure; B–F, analysis after repeated HCl exposures with different times and HCl concentrations as described in detail in Ref. 11.

Fig. 11
Fig. 11

Term Δ versus time in a TIRE experiment in flow conditions for a gold film on glass exposed to milk followed by a rinse in water and subsequent exposure to sodium hydroxide.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

sin ϕc=n1n0.
ρ=RpRs=tan ψ expiΔ.
ρ=rprs=|rp|expiδp|rs|expiδs=tan ψ expiΔ,
rs=N0 cos ϕ0-N1 cos ϕ1N0 cos ϕ0+N1 cos ϕ1,
rp=N1 cos ϕ0-N0 cos ϕ1N1 cos ϕ0+N0 cos ϕ1,
cos ϕ1=-isin ϕ0sin ϕc2-11/2.
rs=n0 cos ϕ0+in1sin ϕ0sin ϕc2-11/2n0 cos ϕ0-in1sin ϕ0sin ϕc2-11/2,
rp=n1 cos ϕ0+in0sin ϕ0sin ϕc2-11/2n1 cos ϕ0-in0sin ϕ0sin ϕc2-11/2.
δs=2 arctansin2 ϕ0-sin2 ϕc1-sin2 ϕ01/2,
δp=2 arctansin2 ϕ0-sin2 ϕc1-sin2 ϕ01/21sin ϕc2.
ψ=45°,
Δ=δp-δs=2 arctansin2 ϕ0-sin2 ϕc1/2sin ϕ0 tan ϕ0.
Et=E0t expiωt-iq1x sin ϕ1+z cos ϕ1,
Et=E0t exp-z/dzexpiωt-iq0x sin ϕ0,
1dz=2πλn0 sin ϕ02-n121/2=2πn1λsin ϕ0sin ϕc2-11/2.
R=r01+r12 exp-i2β1+r01r12 exp-i2β.
β=2πdλ N1 cos ϕ1.
p=|r01p|2×1-4ΓΓradqx-kSP+ΔkSP2+Γ+Γrad2,

Metrics