Abstract

The signal in optical coherence tomography is often modulated either in phase or by use of the Doppler modulation generated by a depth-scanning mechanism. The effect of each type of modulation on the signal’s amplitude is evaluated. The advantages of each type of modulation in terms of immunity to phase noise and penetration depth are discussed in relation to two envelope detection schemes, i.e., lock-in detection and rms-to-dc conversion. Phase noise due to drifts and demodulation instabilities causes distortion of the signal envelope and can be responsible in part for the speckle appearance of the image.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–98 (1990).
    [CrossRef]
  2. W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
    [CrossRef]
  3. A. Gh. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39, 173–182 (2000).
    [CrossRef]
  4. K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098–1108 (1998).
    [CrossRef]
  5. A. M. Rollins, J. A. Izatt, “Optimal interferometer design for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999).
    [CrossRef]
  6. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  7. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, J. G. Fujimoto, “Rapid acquisition of in vivo biological coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
    [CrossRef] [PubMed]
  8. M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
    [CrossRef]
  9. A. G. Podoleanu, G. M. Dobre, D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
    [CrossRef]
  10. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Wang, M. E. Williams, “An optical coherence microscope for 3D imaging in developmental biology,” Opt. Express 6, 136–146 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  11. J. F. de Boer, C. E. Saxer, J. S. Nelson, “Stable carrier generation and phase resolved digital data processing in optical coherence tomography,” Appl. Opt. 40, 5787–5790 (2001).
    [CrossRef]
  12. A. G. Podoleanu, J. A. Rogers, R. A. Cucu, D. A. Jackson, B. Wacogne, H. Porte, T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun. 191, 21–30 (2001).
    [CrossRef]
  13. J. Minkoff, Signals, Noise and Active Sensors (Wiley, New York, 1992).
  14. O. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438–3441 (1993).
    [CrossRef] [PubMed]
  15. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832–843 (1996).
    [CrossRef]
  16. J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography: an overview,” in Saratov Fall Meeting ’98: Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, V. P. Ryabukho, D. A. Zimnyakov, eds., Proc. SPIE3726, 450–561 (1998).
    [CrossRef]

2001 (2)

J. F. de Boer, C. E. Saxer, J. S. Nelson, “Stable carrier generation and phase resolved digital data processing in optical coherence tomography,” Appl. Opt. 40, 5787–5790 (2001).
[CrossRef]

A. G. Podoleanu, J. A. Rogers, R. A. Cucu, D. A. Jackson, B. Wacogne, H. Porte, T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun. 191, 21–30 (2001).
[CrossRef]

2000 (3)

1999 (1)

1998 (3)

1996 (2)

1993 (1)

1992 (1)

W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

1990 (1)

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–98 (1990).
[CrossRef]

Baney, D. M.

W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

Boppart, S. A.

Bouma, B. E.

Caber, O. J.

Cucu, R. A.

A. G. Podoleanu, J. A. Rogers, R. A. Cucu, D. A. Jackson, B. Wacogne, H. Porte, T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun. 191, 21–30 (2001).
[CrossRef]

de Boer, J. F.

Dobre, G. M.

Fernandez, A. D.

Fujimoto, J. G.

Gharbi, T.

A. G. Podoleanu, J. A. Rogers, R. A. Cucu, D. A. Jackson, B. Wacogne, H. Porte, T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun. 191, 21–30 (2001).
[CrossRef]

Golubovic, B.

Haskell, R. C.

Hoeling, B. M.

Huang, E.

Izatt, J. A.

Jackson, D. A.

A. G. Podoleanu, J. A. Rogers, R. A. Cucu, D. A. Jackson, B. Wacogne, H. Porte, T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun. 191, 21–30 (2001).
[CrossRef]

A. G. Podoleanu, G. M. Dobre, D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
[CrossRef]

Kulkarni, M. D.

Laming, R. I.

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–98 (1990).
[CrossRef]

Larkin, K. G.

Minkoff, J.

J. Minkoff, Signals, Noise and Active Sensors (Wiley, New York, 1992).

Morkel, P. R.

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–98 (1990).
[CrossRef]

Myers, W. R.

Nelson, J. S.

Onodera, K.

M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
[CrossRef]

Payne, D. N.

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–98 (1990).
[CrossRef]

Petersen, D. C.

Podoleanu, A. G.

A. G. Podoleanu, J. A. Rogers, R. A. Cucu, D. A. Jackson, B. Wacogne, H. Porte, T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun. 191, 21–30 (2001).
[CrossRef]

A. G. Podoleanu, G. M. Dobre, D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
[CrossRef]

Podoleanu, A. Gh.

Porte, H.

A. G. Podoleanu, J. A. Rogers, R. A. Cucu, D. A. Jackson, B. Wacogne, H. Porte, T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun. 191, 21–30 (2001).
[CrossRef]

Rogers, J. A.

A. G. Podoleanu, J. A. Rogers, R. A. Cucu, D. A. Jackson, B. Wacogne, H. Porte, T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun. 191, 21–30 (2001).
[CrossRef]

Rollins, A. M.

Sato, M.

M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
[CrossRef]

Saxer, C. E.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography: an overview,” in Saratov Fall Meeting ’98: Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, V. P. Ryabukho, D. A. Zimnyakov, eds., Proc. SPIE3726, 450–561 (1998).
[CrossRef]

Seino, K.

M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
[CrossRef]

Sorin, W. V.

W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

Takada, K.

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098–1108 (1998).
[CrossRef]

Tanno, N.

M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
[CrossRef]

Tearney, G. J.

Ung-arunyawee, R.

Ungersma, S. E.

Wacogne, B.

A. G. Podoleanu, J. A. Rogers, R. A. Cucu, D. A. Jackson, B. Wacogne, H. Porte, T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun. 191, 21–30 (2001).
[CrossRef]

Wang, R.

Williams, M. E.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography: an overview,” in Saratov Fall Meeting ’98: Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, V. P. Ryabukho, D. A. Zimnyakov, eds., Proc. SPIE3726, 450–561 (1998).
[CrossRef]

Yazdanfar, S.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography: an overview,” in Saratov Fall Meeting ’98: Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, V. P. Ryabukho, D. A. Zimnyakov, eds., Proc. SPIE3726, 450–561 (1998).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–98 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098–1108 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

A. G. Podoleanu, J. A. Rogers, R. A. Cucu, D. A. Jackson, B. Wacogne, H. Porte, T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun. 191, 21–30 (2001).
[CrossRef]

M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (2)

J. Minkoff, Signals, Noise and Active Sensors (Wiley, New York, 1992).

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography: an overview,” in Saratov Fall Meeting ’98: Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, V. P. Ryabukho, D. A. Zimnyakov, eds., Proc. SPIE3726, 450–561 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Signal power spectra (a) with Doppler modulation, (b) with phase modulation only, and (c) with Doppler shift and phase modulation combined.

Fig. 2
Fig. 2

Power spectra of the signal (a) with Doppler modulation only at 175 Hz and (b) with the same Doppler modulation and phase modulation at 1.5 kHz.

Fig. 3
Fig. 3

Harmonics from phase modulation with a piezoceramic tube stretched at 40 kHz.

Fig. 4
Fig. 4

Relative variations of the power of the first harmonic versus the modulation frequency.

Fig. 5
Fig. 5

Envelope detection by lock-in detection of a two-interface sample.

Fig. 6
Fig. 6

Envelope detection by lock-in detection of one interface sample with Doppler modulation only and with phase modulation and severe phase noise.

Fig. 7
Fig. 7

One-dimensional scan of a multilayer sample by lock-in detection with demodulation at the Doppler frequency and at the Doppler frequency combined with phase modulation.

Fig. 8
Fig. 8

OCT image of mouse skin with little phase noise.

Fig. 9
Fig. 9

OCT image of mouse skin with strong phase noise and severe envelope distortions.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

IdΔz, τϕ=Iac|γΔz|cos2πν0τϕ,
Δf=Δντgt,
fc=2vν0c,
M=2πdν0c,
IdΔz, t=Iac|γΔz|Reexp2πifct×n=-n=+ JnMexpi2πnfpt+ϕ0,
=Iac|γΔz|J0Mcos2πfct+ϕ0-i=0 2J2i+1Msin2πfct+ϕ0sin2π2i+1fpt+i=1 2J2iMcos2πfct+ϕ0cos2π2ifpt.
VPhase+DopplΔz=AJnMIac4 |γΔz|,
VPhaseΔz=AJnMIac2 |γΔz|cosϕ0.
VPhase DopplrmsΔz=Iac2|γΔz|2J0M22+i=1 JiM2.
VPhasermsΔz=Iac2|γΔz|2J0M2 cosϕ02+i=0 2J2i+12Msin2ϕ0+i=1 2J2i2Mcos2ϕ0.
B2ΔfTotal+2fp=2fpM+1.
ϕ0t=N sin2πfdt.
IdΔz, t=Iac|γΔz|cosM sin2πfpt+N sin2πfdt+2πfct,
IdΔz, t=Iac|γΔz|i=-k=- JiMJkNcos2πifpt+2πkfdt+2πfct.
IdΔz, t=Iac|γΔz|i=-j=- JiMJjΔM×cos2πi+jfpt+2πfct.
R1ΔM¯=J1M1+ΔM¯J1M1.
R2ΔM¯=J12M2+ΔM¯+J22M2+ΔM¯J12M2+J22M2.
VPhasermsΔz=Iac2|γΔz|22J12Msin2ϕ0+2J22Mcos2ϕ0.

Metrics