Abstract

Planar silicon dioxide optical waveguides were deposited by use of a plasma-activated reactive evaporation system, at a low deposition temperature and with reduced hydrogen contamination, on thermally oxidized silicon wafers. The deposited films show a refractive-index inhomogeneity of less than 0.1%, a thickness nonuniformity of less than 5%, and a material birefringence of approximately 5 × 10-4. Rib-type channel waveguides were formed on the deposited films by means of hydrofluoric acid etching. The transmission loss of the rib waveguides is determined to be as low as 0.3 dB/cm at a wavelength of 1310 nm for TE polarization, after subtraction of the calculated leakage and scattering losses. Owing to the presence of the OH vibrational overtone band, an additional loss peak of 1 dB/cm is found near the 1385-nm wavelength. The experimental results of transmission loss at wavelengths of 1310 and 1550 nm are compared with analytic expressions for interface scattering and leakage loss.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Durandet, R. Boswell, D. McKenzie, “New plasma-assisted deposition technique using helicon activated reactive evaporation,” Rev. Sci. Instrum. 66, 2908–2913 (1995).
    [Crossref]
  2. B. Higgins, A. Durandet, R. Boswell, “Investigation of silicon transport in the neutral background of a plasma activated reactive evaporation system,” J. Vac. Sci. Technol. B 13, 192–197 (1995).
    [Crossref]
  3. W. T. Li, D. A. P. Bulla, C. Charles, R. Boswell, J. Love, B. Luther-Davies, “Ge-doped SiO2 thin films produced by helicon activated reactive evaporation,” Thin Solid Films 419, 82–87 (2002).
    [Crossref]
  4. W. T. Li, D. A. P. Bulla, J. Love, B. Luther-Davies, C. Charles, R. Boswell, “Hydrogen contamination in Ge-doped SiO2 thin films prepared by helicon activated reactive evaporation,” J. Vac. Sci. Technol. A 21, 792–796 (2003).
    [Crossref]
  5. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt. 26, 2621–2624 (1987).
    [Crossref] [PubMed]
  6. J. J. Refi, “Optical fibers for optical networking,” Bell Lab. Tech. J. 4, 246–260 (1999).
    [Crossref]
  7. K. Worhoff, P. V. Lambeck, A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication device,” J. Lightwave Technol. 17, 1401–1407 (1999).
    [Crossref]
  8. R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
    [Crossref]
  9. L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000).
    [Crossref]
  10. G. G. Matlakowski, C. Charles, A. Durandet, R. W. Boswell, S. Armand, D. Bogsanyi, “Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications,” J. Vac. Sci. Technol. A 12, 2754–2760 (1994).
    [Crossref]
  11. C. A. Davis, “A simple model for the formation of compressive stress in thin films by ion bombardment,” Thin Solid Films 226, 30–34 (1993).
    [Crossref]
  12. C. Charles, R. W. Boswell, “Stress reduction in silicon dioxide layers by pulsing an oxygen/silane helicon diffusion plasma,” J. Appl. Phys. 84, 350–354 (1998).
    [Crossref]
  13. Slab 4.0.09, commercial product of BBV Software BV, Enschede, The Netherlands.
  14. J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
    [Crossref]
  15. S. C. Deshmukh, E. S. Aydil, “Investigation of SiO2 plasma enhanced chemical vapor deposition through tetraethoxysilane using attenuated total reflection Fourier transform infrared spectroscopy,” J. Vac. Sci. Technol. A 13, 2355–2367 (1995).
    [Crossref]
  16. C. Vallee, A. Goullet, A. Grinier, “Direct observation of water incorporation in PECVD SiO2 films by UV-visible ellipsometry,” Thin Solid Films 311, 212–217 (1997).
    [Crossref]
  17. T. Kamal, D. W. Hess, “Enhancement of isopropanol-based photoresist removal by the addition of aqueous alkaline solutions,” J. Vac. Sci. Technol. B 19, 461–466 (2001).
    [Crossref]
  18. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1985).
  19. F. Ladouceur, J. D. Love, Silica-Based Buried Channel Waveguides and Devices (Chapman Hall, London, 1996).
  20. C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
    [Crossref]
  21. R. J. Deri, R. J. Hawkins, E. Kapon, “Rib profile effects on scattering in semiconductor optical waveguides,” Appl. Phys. Lett. 53, 1483–1485 (1988).
    [Crossref]
  22. C. Gorecki, “Optimization of plasma-deposited silicon oxynitride films for optical channel waveguides,” Opt. Lasers Eng. 33, 15–20 (2000).
    [Crossref]
  23. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).
  24. C. Charles, “Wall effects on the chemistry in a pulsed oxygen/silane radio frequency helicon plasma,” J. Phys. D 36, 2076–2082 (2003).
    [Crossref]
  25. W. Stutius, W. Streifer, “Silicon nitride films on silicon for optical waveguides,” Appl. Opt. 16, 3218–3222 (1977).
    [Crossref] [PubMed]
  26. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971).
    [Crossref] [PubMed]
  27. R. J. Deri, E. Kapon, L. M. Schiavone, “Scattering in low-loss GaAs/AlGaAs rib waveguides,” Appl. Phys. Lett. 51, 789–791 (1987).
    [Crossref]
  28. D. A. P. Bulla, B. V. Borges, M. A. Romero, N. I. Morimoto, L. G. Neto, “Design and fabrication of SiO2/Si3N4 optical waveguides,” IEEE Trans. Microwave Theory. Tech. 50, 9–12 (2002).
    [Crossref]

2003 (2)

W. T. Li, D. A. P. Bulla, J. Love, B. Luther-Davies, C. Charles, R. Boswell, “Hydrogen contamination in Ge-doped SiO2 thin films prepared by helicon activated reactive evaporation,” J. Vac. Sci. Technol. A 21, 792–796 (2003).
[Crossref]

C. Charles, “Wall effects on the chemistry in a pulsed oxygen/silane radio frequency helicon plasma,” J. Phys. D 36, 2076–2082 (2003).
[Crossref]

2002 (2)

D. A. P. Bulla, B. V. Borges, M. A. Romero, N. I. Morimoto, L. G. Neto, “Design and fabrication of SiO2/Si3N4 optical waveguides,” IEEE Trans. Microwave Theory. Tech. 50, 9–12 (2002).
[Crossref]

W. T. Li, D. A. P. Bulla, C. Charles, R. Boswell, J. Love, B. Luther-Davies, “Ge-doped SiO2 thin films produced by helicon activated reactive evaporation,” Thin Solid Films 419, 82–87 (2002).
[Crossref]

2001 (2)

T. Kamal, D. W. Hess, “Enhancement of isopropanol-based photoresist removal by the addition of aqueous alkaline solutions,” J. Vac. Sci. Technol. B 19, 461–466 (2001).
[Crossref]

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

2000 (2)

C. Gorecki, “Optimization of plasma-deposited silicon oxynitride films for optical channel waveguides,” Opt. Lasers Eng. 33, 15–20 (2000).
[Crossref]

L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000).
[Crossref]

1999 (2)

1998 (2)

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

C. Charles, R. W. Boswell, “Stress reduction in silicon dioxide layers by pulsing an oxygen/silane helicon diffusion plasma,” J. Appl. Phys. 84, 350–354 (1998).
[Crossref]

1997 (1)

C. Vallee, A. Goullet, A. Grinier, “Direct observation of water incorporation in PECVD SiO2 films by UV-visible ellipsometry,” Thin Solid Films 311, 212–217 (1997).
[Crossref]

1995 (3)

S. C. Deshmukh, E. S. Aydil, “Investigation of SiO2 plasma enhanced chemical vapor deposition through tetraethoxysilane using attenuated total reflection Fourier transform infrared spectroscopy,” J. Vac. Sci. Technol. A 13, 2355–2367 (1995).
[Crossref]

A. Durandet, R. Boswell, D. McKenzie, “New plasma-assisted deposition technique using helicon activated reactive evaporation,” Rev. Sci. Instrum. 66, 2908–2913 (1995).
[Crossref]

B. Higgins, A. Durandet, R. Boswell, “Investigation of silicon transport in the neutral background of a plasma activated reactive evaporation system,” J. Vac. Sci. Technol. B 13, 192–197 (1995).
[Crossref]

1994 (1)

G. G. Matlakowski, C. Charles, A. Durandet, R. W. Boswell, S. Armand, D. Bogsanyi, “Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications,” J. Vac. Sci. Technol. A 12, 2754–2760 (1994).
[Crossref]

1993 (1)

C. A. Davis, “A simple model for the formation of compressive stress in thin films by ion bombardment,” Thin Solid Films 226, 30–34 (1993).
[Crossref]

1990 (1)

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

1988 (1)

R. J. Deri, R. J. Hawkins, E. Kapon, “Rib profile effects on scattering in semiconductor optical waveguides,” Appl. Phys. Lett. 53, 1483–1485 (1988).
[Crossref]

1987 (2)

C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt. 26, 2621–2624 (1987).
[Crossref] [PubMed]

R. J. Deri, E. Kapon, L. M. Schiavone, “Scattering in low-loss GaAs/AlGaAs rib waveguides,” Appl. Phys. Lett. 51, 789–791 (1987).
[Crossref]

1977 (1)

1971 (1)

Albers, H.

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

Armand, S.

G. G. Matlakowski, C. Charles, A. Durandet, R. W. Boswell, S. Armand, D. Bogsanyi, “Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications,” J. Vac. Sci. Technol. A 12, 2754–2760 (1994).
[Crossref]

Aydil, E. S.

S. C. Deshmukh, E. S. Aydil, “Investigation of SiO2 plasma enhanced chemical vapor deposition through tetraethoxysilane using attenuated total reflection Fourier transform infrared spectroscopy,” J. Vac. Sci. Technol. A 13, 2355–2367 (1995).
[Crossref]

Bogsanyi, D.

G. G. Matlakowski, C. Charles, A. Durandet, R. W. Boswell, S. Armand, D. Bogsanyi, “Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications,” J. Vac. Sci. Technol. A 12, 2754–2760 (1994).
[Crossref]

Borges, B. V.

D. A. P. Bulla, B. V. Borges, M. A. Romero, N. I. Morimoto, L. G. Neto, “Design and fabrication of SiO2/Si3N4 optical waveguides,” IEEE Trans. Microwave Theory. Tech. 50, 9–12 (2002).
[Crossref]

Boswell, R.

W. T. Li, D. A. P. Bulla, J. Love, B. Luther-Davies, C. Charles, R. Boswell, “Hydrogen contamination in Ge-doped SiO2 thin films prepared by helicon activated reactive evaporation,” J. Vac. Sci. Technol. A 21, 792–796 (2003).
[Crossref]

W. T. Li, D. A. P. Bulla, C. Charles, R. Boswell, J. Love, B. Luther-Davies, “Ge-doped SiO2 thin films produced by helicon activated reactive evaporation,” Thin Solid Films 419, 82–87 (2002).
[Crossref]

A. Durandet, R. Boswell, D. McKenzie, “New plasma-assisted deposition technique using helicon activated reactive evaporation,” Rev. Sci. Instrum. 66, 2908–2913 (1995).
[Crossref]

B. Higgins, A. Durandet, R. Boswell, “Investigation of silicon transport in the neutral background of a plasma activated reactive evaporation system,” J. Vac. Sci. Technol. B 13, 192–197 (1995).
[Crossref]

Boswell, R. W.

C. Charles, R. W. Boswell, “Stress reduction in silicon dioxide layers by pulsing an oxygen/silane helicon diffusion plasma,” J. Appl. Phys. 84, 350–354 (1998).
[Crossref]

G. G. Matlakowski, C. Charles, A. Durandet, R. W. Boswell, S. Armand, D. Bogsanyi, “Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications,” J. Vac. Sci. Technol. A 12, 2754–2760 (1994).
[Crossref]

Bulla, D. A. P.

W. T. Li, D. A. P. Bulla, J. Love, B. Luther-Davies, C. Charles, R. Boswell, “Hydrogen contamination in Ge-doped SiO2 thin films prepared by helicon activated reactive evaporation,” J. Vac. Sci. Technol. A 21, 792–796 (2003).
[Crossref]

D. A. P. Bulla, B. V. Borges, M. A. Romero, N. I. Morimoto, L. G. Neto, “Design and fabrication of SiO2/Si3N4 optical waveguides,” IEEE Trans. Microwave Theory. Tech. 50, 9–12 (2002).
[Crossref]

W. T. Li, D. A. P. Bulla, C. Charles, R. Boswell, J. Love, B. Luther-Davies, “Ge-doped SiO2 thin films produced by helicon activated reactive evaporation,” Thin Solid Films 419, 82–87 (2002).
[Crossref]

Charles, C.

C. Charles, “Wall effects on the chemistry in a pulsed oxygen/silane radio frequency helicon plasma,” J. Phys. D 36, 2076–2082 (2003).
[Crossref]

W. T. Li, D. A. P. Bulla, J. Love, B. Luther-Davies, C. Charles, R. Boswell, “Hydrogen contamination in Ge-doped SiO2 thin films prepared by helicon activated reactive evaporation,” J. Vac. Sci. Technol. A 21, 792–796 (2003).
[Crossref]

W. T. Li, D. A. P. Bulla, C. Charles, R. Boswell, J. Love, B. Luther-Davies, “Ge-doped SiO2 thin films produced by helicon activated reactive evaporation,” Thin Solid Films 419, 82–87 (2002).
[Crossref]

C. Charles, R. W. Boswell, “Stress reduction in silicon dioxide layers by pulsing an oxygen/silane helicon diffusion plasma,” J. Appl. Phys. 84, 350–354 (1998).
[Crossref]

G. G. Matlakowski, C. Charles, A. Durandet, R. W. Boswell, S. Armand, D. Bogsanyi, “Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications,” J. Vac. Sci. Technol. A 12, 2754–2760 (1994).
[Crossref]

Chiappini, A.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Davis, C. A.

C. A. Davis, “A simple model for the formation of compressive stress in thin films by ion bombardment,” Thin Solid Films 226, 30–34 (1993).
[Crossref]

De Bernardi, C.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

de Ridder, R. M.

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

Deri, R. J.

R. J. Deri, R. J. Hawkins, E. Kapon, “Rib profile effects on scattering in semiconductor optical waveguides,” Appl. Phys. Lett. 53, 1483–1485 (1988).
[Crossref]

R. J. Deri, E. Kapon, L. M. Schiavone, “Scattering in low-loss GaAs/AlGaAs rib waveguides,” Appl. Phys. Lett. 51, 789–791 (1987).
[Crossref]

Deshmukh, S. C.

S. C. Deshmukh, E. S. Aydil, “Investigation of SiO2 plasma enhanced chemical vapor deposition through tetraethoxysilane using attenuated total reflection Fourier transform infrared spectroscopy,” J. Vac. Sci. Technol. A 13, 2355–2367 (1995).
[Crossref]

Driessen, A.

K. Worhoff, P. V. Lambeck, A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication device,” J. Lightwave Technol. 17, 1401–1407 (1999).
[Crossref]

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

Durandet, A.

B. Higgins, A. Durandet, R. Boswell, “Investigation of silicon transport in the neutral background of a plasma activated reactive evaporation system,” J. Vac. Sci. Technol. B 13, 192–197 (1995).
[Crossref]

A. Durandet, R. Boswell, D. McKenzie, “New plasma-assisted deposition technique using helicon activated reactive evaporation,” Rev. Sci. Instrum. 66, 2908–2913 (1995).
[Crossref]

G. G. Matlakowski, C. Charles, A. Durandet, R. W. Boswell, S. Armand, D. Bogsanyi, “Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications,” J. Vac. Sci. Technol. A 12, 2754–2760 (1994).
[Crossref]

Duverger, C.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Ferrari, M.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Fossi, M.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Gorecki, C.

C. Gorecki, “Optimization of plasma-deposited silicon oxynitride films for optical channel waveguides,” Opt. Lasers Eng. 33, 15–20 (2000).
[Crossref]

Goullet, A.

C. Vallee, A. Goullet, A. Grinier, “Direct observation of water incorporation in PECVD SiO2 films by UV-visible ellipsometry,” Thin Solid Films 311, 212–217 (1997).
[Crossref]

Grinier, A.

C. Vallee, A. Goullet, A. Grinier, “Direct observation of water incorporation in PECVD SiO2 films by UV-visible ellipsometry,” Thin Solid Films 311, 212–217 (1997).
[Crossref]

Haruna, M.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Hawkins, R. J.

R. J. Deri, R. J. Hawkins, E. Kapon, “Rib profile effects on scattering in semiconductor optical waveguides,” Appl. Phys. Lett. 53, 1483–1485 (1988).
[Crossref]

Henry, C. H.

Hess, D. W.

T. Kamal, D. W. Hess, “Enhancement of isopropanol-based photoresist removal by the addition of aqueous alkaline solutions,” J. Vac. Sci. Technol. B 19, 461–466 (2001).
[Crossref]

Higgins, B.

B. Higgins, A. Durandet, R. Boswell, “Investigation of silicon transport in the neutral background of a plasma activated reactive evaporation system,” J. Vac. Sci. Technol. B 13, 192–197 (1995).
[Crossref]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1985).

Kamal, T.

T. Kamal, D. W. Hess, “Enhancement of isopropanol-based photoresist removal by the addition of aqueous alkaline solutions,” J. Vac. Sci. Technol. B 19, 461–466 (2001).
[Crossref]

Kapon, E.

R. J. Deri, R. J. Hawkins, E. Kapon, “Rib profile effects on scattering in semiconductor optical waveguides,” Appl. Phys. Lett. 53, 1483–1485 (1988).
[Crossref]

R. J. Deri, E. Kapon, L. M. Schiavone, “Scattering in low-loss GaAs/AlGaAs rib waveguides,” Appl. Phys. Lett. 51, 789–791 (1987).
[Crossref]

Katz, L. E.

Kazarinov, R. F.

Kim, S. S.

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

Ladouceur, F.

F. Ladouceur, J. D. Love, Silica-Based Buried Channel Waveguides and Devices (Chapman Hall, London, 1996).

Lambeck, P. V.

K. Worhoff, P. V. Lambeck, A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication device,” J. Lightwave Technol. 17, 1401–1407 (1999).
[Crossref]

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

Lee, H. J.

Li, W. T.

W. T. Li, D. A. P. Bulla, J. Love, B. Luther-Davies, C. Charles, R. Boswell, “Hydrogen contamination in Ge-doped SiO2 thin films prepared by helicon activated reactive evaporation,” J. Vac. Sci. Technol. A 21, 792–796 (2003).
[Crossref]

W. T. Li, D. A. P. Bulla, C. Charles, R. Boswell, J. Love, B. Luther-Davies, “Ge-doped SiO2 thin films produced by helicon activated reactive evaporation,” Thin Solid Films 419, 82–87 (2002).
[Crossref]

Love, J.

W. T. Li, D. A. P. Bulla, J. Love, B. Luther-Davies, C. Charles, R. Boswell, “Hydrogen contamination in Ge-doped SiO2 thin films prepared by helicon activated reactive evaporation,” J. Vac. Sci. Technol. A 21, 792–796 (2003).
[Crossref]

W. T. Li, D. A. P. Bulla, C. Charles, R. Boswell, J. Love, B. Luther-Davies, “Ge-doped SiO2 thin films produced by helicon activated reactive evaporation,” Thin Solid Films 419, 82–87 (2002).
[Crossref]

Love, J. D.

F. Ladouceur, J. D. Love, Silica-Based Buried Channel Waveguides and Devices (Chapman Hall, London, 1996).

Lucovsky, G.

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

Luther-Davies, B.

W. T. Li, D. A. P. Bulla, J. Love, B. Luther-Davies, C. Charles, R. Boswell, “Hydrogen contamination in Ge-doped SiO2 thin films prepared by helicon activated reactive evaporation,” J. Vac. Sci. Technol. A 21, 792–796 (2003).
[Crossref]

W. T. Li, D. A. P. Bulla, C. Charles, R. Boswell, J. Love, B. Luther-Davies, “Ge-doped SiO2 thin films produced by helicon activated reactive evaporation,” Thin Solid Films 419, 82–87 (2002).
[Crossref]

Martinu, L.

L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000).
[Crossref]

Matlakowski, G. G.

G. G. Matlakowski, C. Charles, A. Durandet, R. W. Boswell, S. Armand, D. Bogsanyi, “Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications,” J. Vac. Sci. Technol. A 12, 2754–2760 (1994).
[Crossref]

McKenzie, D.

A. Durandet, R. Boswell, D. McKenzie, “New plasma-assisted deposition technique using helicon activated reactive evaporation,” Rev. Sci. Instrum. 66, 2908–2913 (1995).
[Crossref]

Montagna, M.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Morimoto, N. I.

D. A. P. Bulla, B. V. Borges, M. A. Romero, N. I. Morimoto, L. G. Neto, “Design and fabrication of SiO2/Si3N4 optical waveguides,” IEEE Trans. Microwave Theory. Tech. 50, 9–12 (2002).
[Crossref]

Moser, E.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Neto, L. G.

D. A. P. Bulla, B. V. Borges, M. A. Romero, N. I. Morimoto, L. G. Neto, “Design and fabrication of SiO2/Si3N4 optical waveguides,” IEEE Trans. Microwave Theory. Tech. 50, 9–12 (2002).
[Crossref]

Nishihara, H.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Orlowsky, K. J.

Pelli, S.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Poitras, D.

L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000).
[Crossref]

Pozzi, F.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Refi, J. J.

J. J. Refi, “Optical fibers for optical networking,” Bell Lab. Tech. J. 4, 246–260 (1999).
[Crossref]

Righini, G. C.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Rolli, R.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Romero, M. A.

D. A. P. Bulla, B. V. Borges, M. A. Romero, N. I. Morimoto, L. G. Neto, “Design and fabrication of SiO2/Si3N4 optical waveguides,” IEEE Trans. Microwave Theory. Tech. 50, 9–12 (2002).
[Crossref]

Ronchin, S.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Rossi, F.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Schiavone, L. M.

R. J. Deri, E. Kapon, L. M. Schiavone, “Scattering in low-loss GaAs/AlGaAs rib waveguides,” Appl. Phys. Lett. 51, 789–791 (1987).
[Crossref]

Streifer, W.

Stutius, W.

Suhara, T.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Theil, J. A.

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

Tien, P. K.

Tosello, C.

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

Tsu, D. V.

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

Vallee, C.

C. Vallee, A. Goullet, A. Grinier, “Direct observation of water incorporation in PECVD SiO2 films by UV-visible ellipsometry,” Thin Solid Films 311, 212–217 (1997).
[Crossref]

Watkins, M. W.

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

Worhoff, K.

K. Worhoff, P. V. Lambeck, A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication device,” J. Lightwave Technol. 17, 1401–1407 (1999).
[Crossref]

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

R. J. Deri, E. Kapon, L. M. Schiavone, “Scattering in low-loss GaAs/AlGaAs rib waveguides,” Appl. Phys. Lett. 51, 789–791 (1987).
[Crossref]

R. J. Deri, R. J. Hawkins, E. Kapon, “Rib profile effects on scattering in semiconductor optical waveguides,” Appl. Phys. Lett. 53, 1483–1485 (1988).
[Crossref]

Bell Lab. Tech. J. (1)

J. J. Refi, “Optical fibers for optical networking,” Bell Lab. Tech. J. 4, 246–260 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

IEEE Trans. Microwave Theory. Tech. (1)

D. A. P. Bulla, B. V. Borges, M. A. Romero, N. I. Morimoto, L. G. Neto, “Design and fabrication of SiO2/Si3N4 optical waveguides,” IEEE Trans. Microwave Theory. Tech. 50, 9–12 (2002).
[Crossref]

J. Appl. Phys. (1)

C. Charles, R. W. Boswell, “Stress reduction in silicon dioxide layers by pulsing an oxygen/silane helicon diffusion plasma,” J. Appl. Phys. 84, 350–354 (1998).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001).
[Crossref]

J. Phys. D (1)

C. Charles, “Wall effects on the chemistry in a pulsed oxygen/silane radio frequency helicon plasma,” J. Phys. D 36, 2076–2082 (2003).
[Crossref]

J. Vac. Sci. Technol. A (5)

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

S. C. Deshmukh, E. S. Aydil, “Investigation of SiO2 plasma enhanced chemical vapor deposition through tetraethoxysilane using attenuated total reflection Fourier transform infrared spectroscopy,” J. Vac. Sci. Technol. A 13, 2355–2367 (1995).
[Crossref]

L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000).
[Crossref]

G. G. Matlakowski, C. Charles, A. Durandet, R. W. Boswell, S. Armand, D. Bogsanyi, “Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications,” J. Vac. Sci. Technol. A 12, 2754–2760 (1994).
[Crossref]

W. T. Li, D. A. P. Bulla, J. Love, B. Luther-Davies, C. Charles, R. Boswell, “Hydrogen contamination in Ge-doped SiO2 thin films prepared by helicon activated reactive evaporation,” J. Vac. Sci. Technol. A 21, 792–796 (2003).
[Crossref]

J. Vac. Sci. Technol. B (2)

B. Higgins, A. Durandet, R. Boswell, “Investigation of silicon transport in the neutral background of a plasma activated reactive evaporation system,” J. Vac. Sci. Technol. B 13, 192–197 (1995).
[Crossref]

T. Kamal, D. W. Hess, “Enhancement of isopropanol-based photoresist removal by the addition of aqueous alkaline solutions,” J. Vac. Sci. Technol. B 19, 461–466 (2001).
[Crossref]

Opt. Lasers Eng. (1)

C. Gorecki, “Optimization of plasma-deposited silicon oxynitride films for optical channel waveguides,” Opt. Lasers Eng. 33, 15–20 (2000).
[Crossref]

Rev. Sci. Instrum. (1)

A. Durandet, R. Boswell, D. McKenzie, “New plasma-assisted deposition technique using helicon activated reactive evaporation,” Rev. Sci. Instrum. 66, 2908–2913 (1995).
[Crossref]

Thin Solid Films (3)

W. T. Li, D. A. P. Bulla, C. Charles, R. Boswell, J. Love, B. Luther-Davies, “Ge-doped SiO2 thin films produced by helicon activated reactive evaporation,” Thin Solid Films 419, 82–87 (2002).
[Crossref]

C. A. Davis, “A simple model for the formation of compressive stress in thin films by ion bombardment,” Thin Solid Films 226, 30–34 (1993).
[Crossref]

C. Vallee, A. Goullet, A. Grinier, “Direct observation of water incorporation in PECVD SiO2 films by UV-visible ellipsometry,” Thin Solid Films 311, 212–217 (1997).
[Crossref]

Other (4)

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1985).

F. Ladouceur, J. D. Love, Silica-Based Buried Channel Waveguides and Devices (Chapman Hall, London, 1996).

Slab 4.0.09, commercial product of BBV Software BV, Enschede, The Netherlands.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

FTIR spectra of a 438-nm-thick SiO2 film deposited at 800-W rf and taken (a) 10 min after deposition (in ambient-saturated with N2) and (b) after 100 days of exposure to atmosphere ambient.

Fig. 2
Fig. 2

AFM picture of a section of rib waveguide (sample C). ϕ, sidewall angle.

Fig. 3
Fig. 3

Rib waveguide profiles, as measured by AFM.

Fig. 4
Fig. 4

Experimental transmission loss for the fundamental TE mode versus the rib core thickness.

Fig. 5
Fig. 5

Experimental transmission spectrum for a 2.9-cm-long rib waveguide (sample D), showing the loss peak at a wavelength of ∼1385 nm.

Fig. 6
Fig. 6

Leakage loss to the substrate calculated from Eq. (1) and with the parameters shown in Table 1.

Fig. 7
Fig. 7

Surface and sidewall scattering loss calculated from Eq. (8)

Tables (2)

Tables Icon

Table 1 Thickness and Optical Characteristics (at 633 nm) of the Films Used for Waveguide Fabrication

Tables Icon

Table 2 Rib Geometry Measured by Surface Profilometer and AFM

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

κ s + i κ b U + V + κ s - i κ b U - V × exp - 2 κ b t b = 0 ,
U = 1 + κ a / κ c tan κ c t c ,
V = κ a / κ b - κ c / κ b tan κ c t c ,
κ a = β 2 - κ 0 2 n a 2 1 / 2 ,
κ b = β 2 - κ 0 2 n b 2 1 / 2 ,
κ c = κ 0 2 n c 2 - β 2 1 / 2 ,
κ s = κ 0 2 n s 2 - β 2 1 / 2 .
α S = 2 β 2 σ 1 2 + σ 2 2 cos 3   θ / sin   θ W + 1 / κ 1 + 1 / κ 2 ,

Metrics