Abstract

Passively Q-switched ceramic Nd3+:YAG lasers with ceramic Cr4+:YAG saturable absorbers are demonstrated. When the lasers are pumped by a 1-W cw laser diode, optical-optical efficiency as great as 22% is obtained with Cr4+:YAG of initial transmission ranging from 94% to 79%. The results are similar to those in their crystalline counterparts. The operation of Brewster’s angle and the polarization state of the laser output are also investigated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. Kaminskii, “Neodymium-doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid-state laser and optical materials,” J. Alloys Comp. 341, 220–225 (2002).
    [CrossRef]
  2. J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Yb3+:Y2O3 ceramics—a novel solid-state laser materials,” Jpn. J. Appl. Phys. 41, L1373–L1375 (2002).
    [CrossRef]
  3. J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
    [CrossRef]
  4. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
    [CrossRef]
  5. J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. 40, L1277–L1279 (2001).
    [CrossRef]
  6. A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
    [CrossRef]
  7. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Highly efficient Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 40, L552–L554 (2001).
    [CrossRef]
  8. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
    [CrossRef]
  9. K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Chromium-doped Y3Al3O12 ceramics—a novel saturable absorber for passively self-Q-switched 1-μm solid-state lasers,” Jpn. J. Appl. Phys. 41, L96–L98 (2002).
    [CrossRef]
  10. J. J. Zayhowski, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
    [CrossRef] [PubMed]
  11. I. Freitag, A. Tunnermann, H. Welling, “Passively Q-switched Nd:YAG ring lasers with high average output power in single-frequency operation,” Opt. Lett. 22, 706–708 (1997).
    [CrossRef] [PubMed]
  12. B. Braun, F. X. Kartner, G. Zhang, M. Moser, U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–382 (1997).
    [CrossRef] [PubMed]
  13. J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, W. Chen, “Laser-diode-pumped Cr4+,Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25, 1101–1103 (2000).
    [CrossRef]
  14. C. Pedersen, T. Skettrup, “Laser modes and threshold conditions in N-mirror resonators,” J. Opt. Soc. Am. B 13, 926–937 (1996).
    [CrossRef]
  15. Y. F. Chen, Y. P. Lan, H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37, 462–468 (2001).
    [CrossRef]
  16. L. Lv, L. Wang, P. Fu, X. Chen, Z. Zhang, V. Gaebler, D. Li, B. Liu, H. J. Eichler, S. Zhang, A. Liu, Z. Zhu, “Diode-pumped self-Q-switched single-frequency 946-nm Nd3+,Cr4+:YAG microchip laser,” Opt. Lett. 26, 72–74 (2001).
    [CrossRef]
  17. H. Liu, O. Hornia, Y. C. Chen, S.-H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946-nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
    [CrossRef]
  18. H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, W. M. Yen, “Saturation of 1.064-μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
    [CrossRef]

2002

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. Kaminskii, “Neodymium-doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid-state laser and optical materials,” J. Alloys Comp. 341, 220–225 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Yb3+:Y2O3 ceramics—a novel solid-state laser materials,” Jpn. J. Appl. Phys. 41, L1373–L1375 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Chromium-doped Y3Al3O12 ceramics—a novel saturable absorber for passively self-Q-switched 1-μm solid-state lasers,” Jpn. J. Appl. Phys. 41, L96–L98 (2002).
[CrossRef]

2001

Y. F. Chen, Y. P. Lan, H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37, 462–468 (2001).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Highly efficient Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 40, L552–L554 (2001).
[CrossRef]

L. Lv, L. Wang, P. Fu, X. Chen, Z. Zhang, V. Gaebler, D. Li, B. Liu, H. J. Eichler, S. Zhang, A. Liu, Z. Zhu, “Diode-pumped self-Q-switched single-frequency 946-nm Nd3+,Cr4+:YAG microchip laser,” Opt. Lett. 26, 72–74 (2001).
[CrossRef]

2000

J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, W. Chen, “Laser-diode-pumped Cr4+,Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25, 1101–1103 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

1997

1996

1995

A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

1994

1992

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, W. M. Yen, “Saturation of 1.064-μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

Akiyama, Y.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. Kaminskii, “Neodymium-doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid-state laser and optical materials,” J. Alloys Comp. 341, 220–225 (2002).
[CrossRef]

Braun, B.

Chang, H. L.

Y. F. Chen, Y. P. Lan, H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37, 462–468 (2001).
[CrossRef]

Chen, W.

Chen, X.

Chen, Y. C.

H. Liu, O. Hornia, Y. C. Chen, S.-H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946-nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
[CrossRef]

Chen, Y. F.

Y. F. Chen, Y. P. Lan, H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37, 462–468 (2001).
[CrossRef]

Deng, P.

Dennis, W. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, W. M. Yen, “Saturation of 1.064-μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

Dong, J.

Eichler, H. J.

Eilers, H.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, W. M. Yen, “Saturation of 1.064-μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

Freitag, I.

Fu, P.

Gaebler, V.

Hoffman, K. R.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, W. M. Yen, “Saturation of 1.064-μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

Hornia, O.

H. Liu, O. Hornia, Y. C. Chen, S.-H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946-nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
[CrossRef]

Ikesue, A.

A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

Jacobsen, S. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, W. M. Yen, “Saturation of 1.064-μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

Kaminskii, A.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Yb3+:Y2O3 ceramics—a novel solid-state laser materials,” Jpn. J. Appl. Phys. 41, L1373–L1375 (2002).
[CrossRef]

K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Chromium-doped Y3Al3O12 ceramics—a novel saturable absorber for passively self-Q-switched 1-μm solid-state lasers,” Jpn. J. Appl. Phys. 41, L96–L98 (2002).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. Kaminskii, “Neodymium-doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid-state laser and optical materials,” J. Alloys Comp. 341, 220–225 (2002).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Highly efficient Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 40, L552–L554 (2001).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Kaminskii, A. A.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

Kartner, F. X.

Keller, U.

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

Kudryashov, A.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

Lan, Y. P.

Y. F. Chen, Y. P. Lan, H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37, 462–468 (2001).
[CrossRef]

Li, C.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Highly efficient Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 40, L552–L554 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Li, D.

Liu, A.

Liu, B.

Liu, H.

H. Liu, O. Hornia, Y. C. Chen, S.-H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946-nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
[CrossRef]

Liu, Y.

Lu, J.

K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Chromium-doped Y3Al3O12 ceramics—a novel saturable absorber for passively self-Q-switched 1-μm solid-state lasers,” Jpn. J. Appl. Phys. 41, L96–L98 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Yb3+:Y2O3 ceramics—a novel solid-state laser materials,” Jpn. J. Appl. Phys. 41, L1373–L1375 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. Kaminskii, “Neodymium-doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid-state laser and optical materials,” J. Alloys Comp. 341, 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Highly efficient Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 40, L552–L554 (2001).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Lu, Y.

Lv, L.

Misawa, K.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

Moser, M.

Murai, T.

K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Chromium-doped Y3Al3O12 ceramics—a novel saturable absorber for passively self-Q-switched 1-μm solid-state lasers,” Jpn. J. Appl. Phys. 41, L96–L98 (2002).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

Musha, M.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Yb3+:Y2O3 ceramics—a novel solid-state laser materials,” Jpn. J. Appl. Phys. 41, L1373–L1375 (2002).
[CrossRef]

Pedersen, C.

Prabhu, M.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Highly efficient Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 40, L552–L554 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Shirakawa, A.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Chromium-doped Y3Al3O12 ceramics—a novel saturable absorber for passively self-Q-switched 1-μm solid-state lasers,” Jpn. J. Appl. Phys. 41, L96–L98 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Yb3+:Y2O3 ceramics—a novel solid-state laser materials,” Jpn. J. Appl. Phys. 41, L1373–L1375 (2002).
[CrossRef]

Skettrup, T.

Song, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Highly efficient Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 40, L552–L554 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Takaichi, K.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Yb3+:Y2O3 ceramics—a novel solid-state laser materials,” Jpn. J. Appl. Phys. 41, L1373–L1375 (2002).
[CrossRef]

K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Chromium-doped Y3Al3O12 ceramics—a novel saturable absorber for passively self-Q-switched 1-μm solid-state lasers,” Jpn. J. Appl. Phys. 41, L96–L98 (2002).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

Tunnermann, A.

Ueda, K.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. Kaminskii, “Neodymium-doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid-state laser and optical materials,” J. Alloys Comp. 341, 220–225 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Yb3+:Y2O3 ceramics—a novel solid-state laser materials,” Jpn. J. Appl. Phys. 41, L1373–L1375 (2002).
[CrossRef]

K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Chromium-doped Y3Al3O12 ceramics—a novel saturable absorber for passively self-Q-switched 1-μm solid-state lasers,” Jpn. J. Appl. Phys. 41, L96–L98 (2002).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Highly efficient Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 40, L552–L554 (2001).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Uematsu, T.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Chromium-doped Y3Al3O12 ceramics—a novel saturable absorber for passively self-Q-switched 1-μm solid-state lasers,” Jpn. J. Appl. Phys. 41, L96–L98 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Yb3+:Y2O3 ceramics—a novel solid-state laser materials,” Jpn. J. Appl. Phys. 41, L1373–L1375 (2002).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

Wang, L.

Welling, H.

Xu, J.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Highly efficient Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 40, L552–L554 (2001).
[CrossRef]

J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, W. Chen, “Laser-diode-pumped Cr4+,Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25, 1101–1103 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Yagi, H.

K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Chromium-doped Y3Al3O12 ceramics—a novel saturable absorber for passively self-Q-switched 1-μm solid-state lasers,” Jpn. J. Appl. Phys. 41, L96–L98 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Yb3+:Y2O3 ceramics—a novel solid-state laser materials,” Jpn. J. Appl. Phys. 41, L1373–L1375 (2002).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. Kaminskii, “Neodymium-doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid-state laser and optical materials,” J. Alloys Comp. 341, 220–225 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Highly efficient Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 40, L552–L554 (2001).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Yanagitani, T.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. Kaminskii, “Neodymium-doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid-state laser and optical materials,” J. Alloys Comp. 341, 220–225 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Yb3+:Y2O3 ceramics—a novel solid-state laser materials,” Jpn. J. Appl. Phys. 41, L1373–L1375 (2002).
[CrossRef]

K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Chromium-doped Y3Al3O12 ceramics—a novel saturable absorber for passively self-Q-switched 1-μm solid-state lasers,” Jpn. J. Appl. Phys. 41, L96–L98 (2002).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Highly efficient Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 40, L552–L554 (2001).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Yen, W. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, W. M. Yen, “Saturation of 1.064-μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

Yoshida, K.

A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

Zayhowski, J. J.

Zhang, G.

Zhang, S.

Zhang, Y.

Zhang, Z.

Zhou, S.-H.

H. Liu, O. Hornia, Y. C. Chen, S.-H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946-nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
[CrossRef]

Zhu, Z.

Appl. Phys. B

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Appl. Phys. Lett.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, W. M. Yen, “Saturation of 1.064-μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

IEEE J. Quantum Electron.

Y. F. Chen, Y. P. Lan, H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37, 462–468 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Liu, O. Hornia, Y. C. Chen, S.-H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946-nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
[CrossRef]

J. Alloys Comp.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. Kaminskii, “Neodymium-doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid-state laser and optical materials,” J. Alloys Comp. 341, 220–225 (2002).
[CrossRef]

J. Am. Ceram. Soc.

A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Highly efficient Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 40, L552–L554 (2001).
[CrossRef]

K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Chromium-doped Y3Al3O12 ceramics—a novel saturable absorber for passively self-Q-switched 1-μm solid-state lasers,” Jpn. J. Appl. Phys. 41, L96–L98 (2002).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Yb3+:Y2O3 ceramics—a novel solid-state laser materials,” Jpn. J. Appl. Phys. 41, L1373–L1375 (2002).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. 40, L1277–L1279 (2001).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of experimental setup: L1, L2, two lenses with f = 8 mm; OC, outcoupler. When we investigated Brewster’s angle operation, the Cr4+:YAG samples were tilted at an angle of 61°.

Fig. 2
Fig. 2

Average output power versus laser-diode pump power with ceramic Cr4+:YAG samples of different initial transmission. The curvature and transmission of the output mirror are 250 mm and 5%, respectively.

Fig. 3
Fig. 3

Average pulse waveform taken at a pump power of 910 mW and a saturable absorber initial transmission of 79%. The FWHM pulse width is ∼14 ns.

Fig. 4
Fig. 4

Average output power versus laser-diode pump power in Brewster’s angle operation for a different initial transmission with an output mirror with a transmission of 5% and a curvature of 250 mm.

Fig. 5
Fig. 5

Ratio of the horizontal polarized component to the total output, P x /P, versus pump power for different operation conditions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ln1T02ln1T02+ln1R+L>σσgsAsA

Metrics