Abstract

We describe the performance of a combined Raman lidar. The temperature is measured with the rotational Raman technique and with the integration technique simultaneously. Additionally measured parameters are particle extinction and backscatter coefficients and water vapor mixing ratio. In a previous stage of the system, instrumental problems restricted the performance. We describe how we rebuilt the instrument and overcame these restrictions. As a result, the measurement time for the same spatial resolution and accuracy of the rotational Raman temperature measurements is reduced by a factor of ∼4.3, and their range could be extended for the first time to the upper stratosphere.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained with lidar between 30 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1981).
    [CrossRef]
  2. P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
    [CrossRef]
  3. T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation and optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, D6, 6177–6187 (1998).
  4. R. G. Strauch, V. E. Derr, R. E. Cupp, “Atmospheric temperature measurements using Raman backscatter,” Appl. Opt. 10, 2665–2669 (1971).
    [CrossRef] [PubMed]
  5. W. P. G. Moskowitz, G. Davidson, D. Sipler, C. R. Philbrick, P. Dao, “Raman augmentation for Rayleigh lidar,” in Proceedings of the 14th International Laser Radar Conference. (Istitute di Ricerca sulle Onde Elettromagnetiche, Comitato Nayionale per le Scienge, Florence, Italy, 1988).
  6. P. Keckhut, M. L. Chanin, A. Hauchecorne, “Stratospheric temperature measurement using Raman lidar,” Appl. Opt. 29, 5182–5185 (1990).
    [CrossRef] [PubMed]
  7. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
    [CrossRef]
  8. J. Cooney, M. Pina, “Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter,” Appl. Opt. 15, 602–603 (1976).
    [CrossRef] [PubMed]
  9. R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
    [CrossRef]
  10. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
    [CrossRef] [PubMed]
  11. D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
    [CrossRef]
  12. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef] [PubMed]
  13. C. R. Philbrick, “Raman lidar measurements of atmospheric properties,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 922–931 (1994).
    [CrossRef]
  14. A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
    [CrossRef]
  15. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
    [CrossRef]
  16. A. Hauchecorne, M. L. Chanin, P. Keckhut, D. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
    [CrossRef]
  17. U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).
  18. S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
    [CrossRef]
  19. S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
    [CrossRef]
  20. A. Behrendt, C. Weitkamp, “Optimizing the spectral parameters of a lidar receiver for rotational Raman temperature measurements,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 113–116.
  21. A. Behrendt, T. Nakamura, “Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature,” Opt. Express, 10, 805–817 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  22. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
    [CrossRef]
  23. J. Cooney, “Remote measurement of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
    [CrossRef]
  24. V. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).
    [CrossRef]
  25. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
    [CrossRef]
  26. D. R. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 786.
  27. D. Rees, J. J. Barnett, K. Labitzke, eds., CIRA 1986, Part II: Middle Atmosphere Models, Adv. Space Res. (COSPAR)10(12) (1990).

2002 (2)

2000 (2)

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

1999 (1)

1998 (1)

T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation and optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, D6, 6177–6187 (1998).

1993 (3)

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

1992 (2)

1990 (1)

1985 (2)

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

1983 (1)

1981 (1)

A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained with lidar between 30 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1981).
[CrossRef]

1979 (1)

R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

1976 (1)

1972 (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

1971 (1)

1970 (1)

J. Cooney, “Remote measurement of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

1969 (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Adolfsen, K.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Ansmann, A.

Arshinov, Y. F.

Baumgart, R.

Baumgarten, G.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Behrendt, A.

Bobrovnikov, S. M.

Chanin, M. L.

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

A. Hauchecorne, M. L. Chanin, P. Keckhut, D. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
[CrossRef]

P. Keckhut, M. L. Chanin, A. Hauchecorne, “Stratospheric temperature measurement using Raman lidar,” Appl. Opt. 29, 5182–5185 (1990).
[CrossRef] [PubMed]

A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained with lidar between 30 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1981).
[CrossRef]

Cooney, J.

R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

J. Cooney, M. Pina, “Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter,” Appl. Opt. 15, 602–603 (1976).
[CrossRef] [PubMed]

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

J. Cooney, “Remote measurement of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

Cupp, R. E.

Dao, P.

W. P. G. Moskowitz, G. Davidson, D. Sipler, C. R. Philbrick, P. Dao, “Raman augmentation for Rayleigh lidar,” in Proceedings of the 14th International Laser Radar Conference. (Istitute di Ricerca sulle Onde Elettromagnetiche, Comitato Nayionale per le Scienge, Florence, Italy, 1988).

Davidson, G.

W. P. G. Moskowitz, G. Davidson, D. Sipler, C. R. Philbrick, P. Dao, “Raman augmentation for Rayleigh lidar,” in Proceedings of the 14th International Laser Radar Conference. (Istitute di Ricerca sulle Onde Elettromagnetiche, Comitato Nayionale per le Scienge, Florence, Italy, 1988).

Derr, V. E.

Evans, D. R.

D. R. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 786.

Farina, J.

R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

Fiedler, J.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Fricke, K. H.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Fukao, S.

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

Geller, K.

R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

Gill, R.

R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

Hauchecome, A.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Hauchecorne, A.

V. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).
[CrossRef]

T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation and optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, D6, 6177–6187 (1998).

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

A. Hauchecorne, M. L. Chanin, P. Keckhut, D. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
[CrossRef]

P. Keckhut, M. L. Chanin, A. Hauchecorne, “Stratospheric temperature measurement using Raman lidar,” Appl. Opt. 29, 5182–5185 (1990).
[CrossRef] [PubMed]

A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained with lidar between 30 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1981).
[CrossRef]

Kato, S.

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

Kato, T.

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

Keckhut, P.

T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation and optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, D6, 6177–6187 (1998).

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

A. Hauchecorne, M. L. Chanin, P. Keckhut, D. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
[CrossRef]

P. Keckhut, M. L. Chanin, A. Hauchecorne, “Stratospheric temperature measurement using Raman lidar,” Appl. Opt. 29, 5182–5185 (1990).
[CrossRef] [PubMed]

Lawrence, J. D.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Leblanc, T.

T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation and optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, D6, 6177–6187 (1998).

Lenoble, J.

Makihira, T.

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

McCormick, M. P.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

McDermid, I. S.

T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation and optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, D6, 6177–6187 (1998).

Melfi, S. H.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Michaelis, W.

Mitev, V.

Mitev, V. M.

Moskowitz, W. P. G.

W. P. G. Moskowitz, G. Davidson, D. Sipler, C. R. Philbrick, P. Dao, “Raman augmentation for Rayleigh lidar,” in Proceedings of the 14th International Laser Radar Conference. (Istitute di Ricerca sulle Onde Elettromagnetiche, Comitato Nayionale per le Scienge, Florence, Italy, 1988).

Nakamura, T.

Nedeljkovic, D.

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

A. Hauchecorne, M. L. Chanin, P. Keckhut, D. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
[CrossRef]

Nelke, G.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Onishi, M.

Pepler, S. J.

Philbrick, C. R.

C. R. Philbrick, “Raman lidar measurements of atmospheric properties,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 922–931 (1994).
[CrossRef]

W. P. G. Moskowitz, G. Davidson, D. Sipler, C. R. Philbrick, P. Dao, “Raman augmentation for Rayleigh lidar,” in Proceedings of the 14th International Laser Radar Conference. (Istitute di Ricerca sulle Onde Elettromagnetiche, Comitato Nayionale per le Scienge, Florence, Italy, 1988).

Pina, M.

Rees, D.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Reichardt, J.

Riebesell, M.

Sato, S.

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

Sato, T.

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

Sherlock, V.

Sipler, D.

W. P. G. Moskowitz, G. Davidson, D. Sipler, C. R. Philbrick, P. Dao, “Raman augmentation for Rayleigh lidar,” in Proceedings of the 14th International Laser Radar Conference. (Istitute di Ricerca sulle Onde Elettromagnetiche, Comitato Nayionale per le Scienge, Florence, Italy, 1988).

Strauch, R. G.

Thomas, L.

Tsuda, T.

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
[CrossRef]

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

Vaughan, G.

von Cossart, G.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

von Zahn, U.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Wakasugi, K.

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

Wandinger, U.

Wareing, D. P.

Weitkamp, C.

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef]

A. Behrendt, C. Weitkamp, “Optimizing the spectral parameters of a lidar receiver for rotational Raman temperature measurements,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 113–116.

Zuev, V. E.

Ann. Geophys. (1)

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Appl. Opt. (9)

Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef] [PubMed]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

R. G. Strauch, V. E. Derr, R. E. Cupp, “Atmospheric temperature measurements using Raman backscatter,” Appl. Opt. 10, 2665–2669 (1971).
[CrossRef] [PubMed]

P. Keckhut, M. L. Chanin, A. Hauchecorne, “Stratospheric temperature measurement using Raman lidar,” Appl. Opt. 29, 5182–5185 (1990).
[CrossRef] [PubMed]

J. Cooney, M. Pina, “Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter,” Appl. Opt. 15, 602–603 (1976).
[CrossRef] [PubMed]

A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
[CrossRef]

V. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef]

Appl. Phys. B (1)

A. Hauchecorne, M. L. Chanin, P. Keckhut, D. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Geophys. Res. Lett. (1)

A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained with lidar between 30 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1981).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

J. Appl. Meteorol. (3)

R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

J. Cooney, “Remote measurement of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

J. Geophys. Res. (1)

T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation and optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, D6, 6177–6187 (1998).

Opt. Express (1)

Radio Sci. (2)

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

Other (5)

A. Behrendt, C. Weitkamp, “Optimizing the spectral parameters of a lidar receiver for rotational Raman temperature measurements,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 113–116.

C. R. Philbrick, “Raman lidar measurements of atmospheric properties,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 922–931 (1994).
[CrossRef]

W. P. G. Moskowitz, G. Davidson, D. Sipler, C. R. Philbrick, P. Dao, “Raman augmentation for Rayleigh lidar,” in Proceedings of the 14th International Laser Radar Conference. (Istitute di Ricerca sulle Onde Elettromagnetiche, Comitato Nayionale per le Scienge, Florence, Italy, 1988).

D. R. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 786.

D. Rees, J. J. Barnett, K. Labitzke, eds., CIRA 1986, Part II: Middle Atmosphere Models, Adv. Space Res. (COSPAR)10(12) (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Setup of the RASC lidar: BD, beam dump; PD, photodiode; BSM, beam-steering mirror. The laser output is synchronized to a chopper blade that protects the high-altitude channel PMT used for the integration technique temperature measurements from the intense lower-altitude signal.

Fig. 2
Fig. 2

Setup of the RASC lidar polychromator: L1–L9, lenses; IFa and IFb, interference filters; BS1–BS5, beam splitters; ND, neutral-density filters; M, mirror; PMT1–PMT5, photomultiplier tubes for the signals indicated. The Na resonance channel with BSx, IFx, Lx, and PMTx belongs to a collocated lidar; BSx was removed for the measurements shown here.

Fig. 3
Fig. 3

Transmission versus wavelength for beam splitters BS3, BS4a+BS4b, and BS5 used to extract the elastic signal and rotational Raman signals N RR1 and N RR2, respectively. The laser wavelength λ0 of 532.25 nm is marked. The transmission data of the filters owned by GKSS Research Center, Geesthacht, Germany, which we used until October 2001, are shown for comparison (with CWLs increased by 0.14 nm; see text).

Fig. 4
Fig. 4

(a) Calculated intensity of the two pure rotational Raman signals N RR1 and N RR2 versus temperature T for the new interference filters. (b) Signal ratio Q, which serves for the temperature measurement of the atmosphere, and weighted sum N ref, which is used as the Raman reference signal. (c) Relative change of N ref with temperature. Vertical lines mark the range of atmospheric temperatures of the measurement example shown in Fig. 6.

Fig. 5
Fig. 5

Dependence of the statistical measurement uncertainty ΔT (relative units) on the CWL of both rotational Raman channels for a temperature of 240 K. For the calculation, the filter transmission curves were approximated by rectangular filter passbands with widths of 0.6 and 1.2 nm for the first and second rotational Raman channels, respectively. The calculated step width was 0.025 nm. Values are given relative to the minimum error near CWLRR1 = 531.7 nm and CWLRR2 = 528.7 nm (□). The CWLs of the GKSS filters and the RASC filters are marked G and R, respectively.

Fig. 6
Fig. 6

Temperature measured with the RASC Raman lidar on 9 and 10 August 2002, 23.15–00.27 Japan standard time (JST). Rotational Raman temperature values were derived with analog (dashed curves) and photon-counting signals (solid curves). Lidar data with a height resolution of 72 m were used up to 15-km height; the data between 15 and 20 km, 20 and 30 km, and above 30 km were smoothed with sliding average lengths of 360, 1080, and 2952 m, respectively. Error bars in the top and bottom left panels and the curves in the bottom right panel show the 1-σ statistical uncertainty of the rotational Raman temperature measurements by use of the photon-counting signals. The crosses in the right panel depict the top height of each averaging length. The CIRA-86 profile for 35 °N and the month of August and data of a radiosonde launched in Yonago (35.4 °N, 133.4 °E) at 21.00 JST are shown for comparison.

Fig. 7
Fig. 7

Relation among integration time, height resolution, and 1-σ statistical uncertainty of the temperature measurements with the rotational Raman technique for the upgraded RASC lidar (calculated with the background-corrected data of 9 and 10 August 2002, 23.15–00.27 JST).

Fig. 8
Fig. 8

Consecutive temperature profiles measured with the rotational Raman technique (left) and their statistical uncertainty ΔT (right). The time and height resolution of the raw data is 1 min and 72 m, respectively; for this plot, the photon-counting data were used and smoothed with a sliding average window of 7 min and 360 m. The average of the same data is shown in Fig. 6.

Fig. 9
Fig. 9

Measurements in the presence of a high-altitude cloud layer (25 September 2002, 21.00–21.30 JST, i.e., 90,000 laser shots): (a) temperature with the rotational Raman technique, (b) statistical uncertainty of the temperature measurement, (c) backscatter ratio, (d) particle backscatter coefficient βpar, (c) particle extinction coefficient αpar, (f) water vapor mixing ratio. Measurement data of a radiosonde started at the lidar site (reaching altitudes of 6.5 and 18.5 km at 21.00 and 21.30 JST, respectively), the molecular backscatter coefficient βmol and the molecular extinction coefficient αmol are shown for comparison (enlarged by a factor of 10).

Tables (3)

Tables Icon

Table 1 Technical Data of the RASC Lidar with the Recent Upgrades

Tables Icon

Table 2 Optical Properties of the Filter Polychromatora

Tables Icon

Table 3 Main Properties of the Receiving Channels of the RASC Lidar

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔN=N,
ΔT=TQ Q1NRR1+1NRR21/2=NRR1T1NRR1-NRR2T1NRR2-11NRR1+1NRR21/2,
Q=NRR2NRR1
TQT2-T1QT2-QT1.

Metrics