Abstract

An effective Mie-scattering model is developed to deal with the scattering property of a spherical fractal aggregate consisting of scattering particles. In this model the scattered field of a scattering particle is given by the classical Mie-scattering theory. On the basis of the Monte Carlo simulation method, we determine the physical parameters of a scattering aggregate, the scattering efficiency Q, and the anisotropy value g, as well as their dependence on the size and the effective mean-free-path length of a scattering aggregate. Accordingly, photon migration through a microscope objective focused into a turbid medium including scattering aggregates is simulated to understand the effect of complex tissue on image quality.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical free-path-length distribution in a fractal aggregate and its effect on enhanced backscattering

Katsuhiro Ishii, Toshiaki Iwai, Jun Uozumi, and Toshimitsu Asakura
Appl. Opt. 37(21) 5014-5018 (1998)

Mean-field approximation of Mie scattering by fractal aggregates of identical spheres

Robert Botet, Pascal Rannou, and Michel Cabane
Appl. Opt. 36(33) 8791-8797 (1997)

Monte Carlo modeling of optical coherence tomography imaging through turbid media

Qiang Lu, Xiaosong Gan, Min Gu, and Qingming Luo
Appl. Opt. 43(8) 1628-1637 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription