Abstract

A novel optical encryption based on polarization is proposed and applied to a holographic memory system. Original binary data are described as two orthogonal linear polarization states. These input polarization states can be modulated by use of two polarization-modulation masks located at the input and the Fourier planes. Each modulation mask can convert an input polarization state into a random polarization state. Once encrypted, the polarization state is recorded as a hologram. For the decryption, the hologram can generate a vector phase-conjugate beam. When the same polarization-modulation masks are used, the vector phase-conjugate readout can cancel the polarization modulation at each mask, and the original polarization state can be recovered. The encryption of the proposed method is evaluated numerically. We also present experimental results by demonstrating holographic recording in a bacteriorhodopsin film.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [Crossref] [PubMed]
  2. B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
    [Crossref]
  3. B. Javidi, G. Zhang, J. Li, “Encrypted optical memory using double-random phase encoding,” Appl. Opt. 36, 1054–1058 (1997).
    [Crossref] [PubMed]
  4. N. Yoshikawa, M. Itoh, T. Yatagai, “Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography,” Opt. Lett. 23, 1483–1485 (1998).
    [Crossref]
  5. O. Matoba, B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
    [Crossref]
  6. P. C. Mogensen, J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25, 566–568 (2000).
    [Crossref]
  7. S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulators,” IEEE Photon. Technol. Lett. 3, 1133–1135 (1991).
    [Crossref]
  8. O. Matoba, B. Javidi, “Encrypted optical storage with wavelength-key and random phase codes,” Appl. Opt. 38, 6784–6790 (1999).
    [Crossref]
  9. G. Unnikrishnan, J. Joseph, K. Singh, “Fractional Fourier domain encrypted holographic memory by use of an anamorphic optical system,” Appl. Opt. 40, 299–306 (2001).
    [Crossref]
  10. J. A. David, R. P. Tiangco, D. M. Cottrell, D. C. O’Shea, M. K. Poutous, “Four-plane space-variant Fresnel-transform optical processor with a random phase encoder,” Appl. Opt. 35, 3819–3828 (1996).
    [Crossref]
  11. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [Crossref] [PubMed]
  12. H. Coufal, D. Psaltis, G. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
    [Crossref]
  13. N. Towghi, B. Javidi, Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915–1927 (1999).
    [Crossref]
  14. X. Tan, O. Matoba, T. Shimura, K. Kuroda, B. Javidi, “Secure optical storage that uses fully phase encryption,” Appl. Opt. 39, 6689–6694 (2000).
    [Crossref]
  15. B. Javidi, T. Nomura, “Polarization encoding for optical security systems,” Opt. Eng. 39, 2439–2443 (2000).
    [Crossref]
  16. X. Tan, O. Matoba, Y. Okada-Shudo, M. Ide, T. Shimura, K. Kuroda, “Secure optical memory system with polarization encryption,” Appl. Opt. 40, 2310–2315 (2001).
    [Crossref]
  17. K. Kawano, T. Ishii, J. Minabe, T. Niitsu, Y. Nishikata, K. Baba, “Holographic recording and retrieval of polarized light by use of polyester containing cyanoazobenzene units in the side chain,” Opt. Lett. 24, 1269–1271 (1999).
    [Crossref]
  18. J. A. Davis, D. E. McNamara, D. M. Cottrell, T. Sonhara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
    [Crossref]
  19. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1997) Chap. 1.4, pp. 23–36.
  20. E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum Electron. 17, 450–454 (1987).
    [Crossref]
  21. Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
    [Crossref]

2001 (2)

2000 (4)

1999 (4)

1998 (1)

1997 (1)

1996 (1)

1995 (1)

1994 (2)

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[Crossref]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

1993 (1)

Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[Crossref]

1991 (1)

S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulators,” IEEE Photon. Technol. Lett. 3, 1133–1135 (1991).
[Crossref]

1987 (1)

E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum Electron. 17, 450–454 (1987).
[Crossref]

Baba, K.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

Born, M.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1997) Chap. 1.4, pp. 23–36.

Cottrell, D. M.

Coufal, H.

H. Coufal, D. Psaltis, G. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[Crossref]

David, J. A.

Davis, J. A.

Fukushima, S.

S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulators,” IEEE Photon. Technol. Lett. 3, 1133–1135 (1991).
[Crossref]

Glückstad, J.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

Horner, J. L.

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[Crossref]

Ide, M.

Ishii, T.

Itoh, M.

Javidi, B.

Joseph, J.

Kawano, K.

Korchemskaya, E. Ya.

E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum Electron. 17, 450–454 (1987).
[Crossref]

Kuroda, K.

Kurokawa, T.

S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulators,” IEEE Photon. Technol. Lett. 3, 1133–1135 (1991).
[Crossref]

Li, J.

Luo, Z.

Matoba, O.

McNamara, D. E.

Minabe, J.

Mogensen, P. C.

Niitsu, T.

Nishikata, Y.

Nomura, T.

B. Javidi, T. Nomura, “Polarization encoding for optical security systems,” Opt. Eng. 39, 2439–2443 (2000).
[Crossref]

O’Shea, D. C.

Okada-Shudo, Y.

X. Tan, O. Matoba, Y. Okada-Shudo, M. Ide, T. Shimura, K. Kuroda, “Secure optical memory system with polarization encryption,” Appl. Opt. 40, 2310–2315 (2001).
[Crossref]

Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[Crossref]

Otomo, J.

Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[Crossref]

Poutous, M. K.

Psaltis, D.

H. Coufal, D. Psaltis, G. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[Crossref]

Réfrégier, P.

Sakai, Y.

S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulators,” IEEE Photon. Technol. Lett. 3, 1133–1135 (1991).
[Crossref]

Sasabe, H.

Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[Crossref]

Shimura, T.

Sincerbox, G.

H. Coufal, D. Psaltis, G. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[Crossref]

Singh, K.

Sonhara, T.

Soskin, M. S.

E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum Electron. 17, 450–454 (1987).
[Crossref]

Tan, X.

Taranenko, V. B.

E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum Electron. 17, 450–454 (1987).
[Crossref]

Tiangco, R. P.

Towghi, N.

Unnikrishnan, G.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1997) Chap. 1.4, pp. 23–36.

Yamaguchi, I.

Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[Crossref]

Yatagai, T.

Yoshikawa, N.

Zhang, G.

Appl. Opt. (7)

IEEE Photon. Technol. Lett. (1)

S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulators,” IEEE Photon. Technol. Lett. 3, 1133–1135 (1991).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[Crossref]

Opt. Eng. (2)

B. Javidi, T. Nomura, “Polarization encoding for optical security systems,” Opt. Eng. 39, 2439–2443 (2000).
[Crossref]

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[Crossref]

Opt. Lett. (5)

Science (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[Crossref] [PubMed]

Sov. J. Quantum Electron. (1)

E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum Electron. 17, 450–454 (1987).
[Crossref]

Other (2)

H. Coufal, D. Psaltis, G. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[Crossref]

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1997) Chap. 1.4, pp. 23–36.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the double-random polarization encryption technique: f, focal length.

Fig. 2
Fig. 2

Transformation of the polarization state by a modulation mask with a phase retardation of Δ jk and a direction of principal axis θ jk with respect to the input linear polarization on the Poincaré sphere.

Fig. 3
Fig. 3

Numerical results for (a) the original binary image and (b)–(d) the encrypted images by the single polarization-modulation method, the double-random polarization method, and the double-random phase encryption method, respectively.

Fig. 4
Fig. 4

BER as a function of cell size in the original binary image.

Fig. 5
Fig. 5

Experimental setup: BR, bacteriorhodopsin film; P, polarizer; λ/4, quarter-wave plate; M1–M5, mirrors; BS3, beam splitter; L3, lens. See text for other definitions.

Fig. 6
Fig. 6

Experimental results for (a) the original, (b) the encrypted, and (c) the decrypted images.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Mjk=Rθjkexp-iΔjk/200expiΔjk/2R-θjk,
Nlm=Rϕlm×exp-iΔlm/200expiΔlm/2R-ϕlm,
Rα=cos α-sin αsin αcos α.
pjk=Mjkdjk.
ejk=Fjk-1NlmFlmpjk,
Flmpjk=j=0N-1k=0N-1 pjk exp-i 2πNlj+mk.
rjk=Mjk-1F-1Nlm-1Fejk=djk.
d=01, d=10.
a=01,

Metrics