Abstract

Results from the investigation of the diffusion processes in a dry acrylamide-based photopolymer system are presented. The investigation is carried out in the context of experimental research on optimization of the high-spatial-frequency response of the photopolymer. Tracing the transmission holographic grating dynamics at short times of exposure is utilized to measure diffusion coefficients. The results reveal that two different diffusion processes contribute with opposite sign to the refractive-index modulation responsible for the diffraction grating buildup. Monomer diffusion from dark to bright fringe areas increases the refractive-index modulation. It is characterized with diffusion constant D 0 = 1.6 × 10-7 cm2/s. A second diffusion process takes place during the recording. It decreases the refractive-index modulation and we ascribe it to diffusion of short-chain polymer molecules or radicals from bright to dark fringe areas. The estimated diffusion coefficient for this process is D 0 = 6.35 × 10-10 cm2/s. The presence of the second process could be responsible for the poor high-spatial-frequency response of the investigated photopolymer system. Comparison with the diffusion in photopolymer systems known for their good response at high spatial frequencies shows that both investigated diffusion processes occur in a much faster time scale.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Trout, J. Schmieg, W. Gambogi, A. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
    [CrossRef]
  2. S. Martin, C. A. Feely, V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
    [CrossRef] [PubMed]
  3. S. Guntaka, V. Toal, S. Martin, “Holographically recorded photopolymer diffractive optical element for holographic and electronic speckle-pattern interferometry,” Appl. Opt. 41, 7475–7479 (2002).
    [CrossRef] [PubMed]
  4. C. Carre, D. Lougnot, “Photopolymers for holographic recording—from standard to self-processing materials,” J. Phys. (Paris) 3, 1445–1460 (1993).
  5. D. Psaltis, G. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
    [CrossRef]
  6. S. Orlic, S. Ulm, H. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001).
    [CrossRef]
  7. L. Dhar, A. Hale, H. Katz, L. Schilling, M. Schnoes, F. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
    [CrossRef]
  8. S. Martin, “A new photopolymer recording material for holographic applications: photochemical and holographic studies towards an optimized system,” Ph.D. dissertation (School of Physics, Dublin Institute of Technology, Dublin, Ireland, 1995).
  9. J. Gallo, C. Veber, “Model of the effect of material shrinkage on volume holograms,” Appl. Opt. 33, 6797–6804 (1994).
    [CrossRef] [PubMed]
  10. G. Zhao, P. Mourolis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
    [CrossRef]
  11. V. Moreau, Y. Renotte, Y. Lion, “Characterisation of DuPont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41, 3427–3435 (2002).
    [CrossRef] [PubMed]
  12. V. Colvin, R. Larson, A. Harris, M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
    [CrossRef]
  13. J. H. Kwon, H. C. Hwang, K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651–1657 (1999).
    [CrossRef]
  14. S. Piazzolla, B. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000).
    [CrossRef]
  15. J. Lawrence, F. O’Neill, J. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002).
    [CrossRef]
  16. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  17. P. Hariharan, in Modern Optics, Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, UK, 1996).
  18. M. G. Moharam, T. K. Gaylord, R. Magnusson, “Bragg diffraction of finite beams by thick gratings,” J. Opt. Soc. Am. 70, 300–304 (1980).
    [CrossRef]
  19. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593–601 (1975).
    [CrossRef] [PubMed]
  20. W. Colburn, K. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
    [CrossRef] [PubMed]
  21. W. Tomlinson, E. Chandross, “Organic photochemical refractive index image recording systems,” in Advances in Photochemistry, T. N. Pitts, G. S. Hammond, K. Gallnik, D. Grosjier, eds. (Wiley Interscience, London, 1980), Vol. 12, pp. 201–280.
    [CrossRef]

2002 (3)

2001 (1)

S. Orlic, S. Ulm, H. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001).
[CrossRef]

2000 (1)

1999 (2)

1998 (2)

D. Psaltis, G. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
[CrossRef]

T. Trout, J. Schmieg, W. Gambogi, A. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

1997 (2)

S. Martin, C. A. Feely, V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
[CrossRef] [PubMed]

V. Colvin, R. Larson, A. Harris, M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

1994 (2)

J. Gallo, C. Veber, “Model of the effect of material shrinkage on volume holograms,” Appl. Opt. 33, 6797–6804 (1994).
[CrossRef] [PubMed]

G. Zhao, P. Mourolis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

1993 (1)

C. Carre, D. Lougnot, “Photopolymers for holographic recording—from standard to self-processing materials,” J. Phys. (Paris) 3, 1445–1460 (1993).

1980 (1)

1975 (1)

1971 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Booth, B. L.

Burr, G.

D. Psaltis, G. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
[CrossRef]

Carre, C.

C. Carre, D. Lougnot, “Photopolymers for holographic recording—from standard to self-processing materials,” J. Phys. (Paris) 3, 1445–1460 (1993).

Chandross, E.

W. Tomlinson, E. Chandross, “Organic photochemical refractive index image recording systems,” in Advances in Photochemistry, T. N. Pitts, G. S. Hammond, K. Gallnik, D. Grosjier, eds. (Wiley Interscience, London, 1980), Vol. 12, pp. 201–280.
[CrossRef]

Colburn, W.

Colvin, V.

V. Colvin, R. Larson, A. Harris, M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Dhar, L.

Eichler, H.

S. Orlic, S. Ulm, H. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001).
[CrossRef]

Feely, C. A.

Gallo, J.

Gambogi, W.

T. Trout, J. Schmieg, W. Gambogi, A. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Gaylord, T. K.

Guntaka, S.

Haines, K.

Hale, A.

Hariharan, P.

P. Hariharan, in Modern Optics, Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, UK, 1996).

Harris, A.

V. Colvin, R. Larson, A. Harris, M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Hwang, H. C.

Jenkins, B.

Katz, H.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kwon, J. H.

Larson, R.

V. Colvin, R. Larson, A. Harris, M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Lawrence, J.

Lion, Y.

Lougnot, D.

C. Carre, D. Lougnot, “Photopolymers for holographic recording—from standard to self-processing materials,” J. Phys. (Paris) 3, 1445–1460 (1993).

Magnusson, R.

Martin, S.

Moharam, M. G.

Moreau, V.

Mourolis, P.

G. Zhao, P. Mourolis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

O’Neill, F.

Orlic, S.

S. Orlic, S. Ulm, H. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001).
[CrossRef]

Piazzolla, S.

Psaltis, D.

D. Psaltis, G. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
[CrossRef]

Renotte, Y.

Schilling, F.

Schilling, L.

Schilling, M.

V. Colvin, R. Larson, A. Harris, M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Schmieg, J.

T. Trout, J. Schmieg, W. Gambogi, A. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Schnoes, M.

Sheridan, J.

Toal, V.

Tomlinson, W.

W. Tomlinson, E. Chandross, “Organic photochemical refractive index image recording systems,” in Advances in Photochemistry, T. N. Pitts, G. S. Hammond, K. Gallnik, D. Grosjier, eds. (Wiley Interscience, London, 1980), Vol. 12, pp. 201–280.
[CrossRef]

Trout, T.

T. Trout, J. Schmieg, W. Gambogi, A. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Ulm, S.

S. Orlic, S. Ulm, H. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001).
[CrossRef]

Veber, C.

Weber, A.

T. Trout, J. Schmieg, W. Gambogi, A. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Woo, K. C.

Zhao, G.

G. Zhao, P. Mourolis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Adv. Mater. (1)

T. Trout, J. Schmieg, W. Gambogi, A. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Appl. Opt. (6)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Computer (1)

D. Psaltis, G. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
[CrossRef]

J. Appl. Phys. (1)

V. Colvin, R. Larson, A. Harris, M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

J. Mod. Opt. (1)

G. Zhao, P. Mourolis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

J. Opt. A (1)

S. Orlic, S. Ulm, H. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

J. Phys. (Paris) (1)

C. Carre, D. Lougnot, “Photopolymers for holographic recording—from standard to self-processing materials,” J. Phys. (Paris) 3, 1445–1460 (1993).

Opt. Lett. (1)

Other (3)

S. Martin, “A new photopolymer recording material for holographic applications: photochemical and holographic studies towards an optimized system,” Ph.D. dissertation (School of Physics, Dublin Institute of Technology, Dublin, Ireland, 1995).

P. Hariharan, in Modern Optics, Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, UK, 1996).

W. Tomlinson, E. Chandross, “Organic photochemical refractive index image recording systems,” in Advances in Photochemistry, T. N. Pitts, G. S. Hammond, K. Gallnik, D. Grosjier, eds. (Wiley Interscience, London, 1980), Vol. 12, pp. 201–280.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Refractive-index modulation after a recording for 0.1 s with an intensity of 40 mW/cm2 at a spatial frequency of 200 lines/mm. The grating is illuminated with a homogeneous light 325 s after the beginning of the recording.

Fig. 2
Fig. 2

Comparison of the dynamics of the refractive-index modulation at low spatial frequencies of 100 (gray) and 200 lines/mm (black). Recording intensity was 40 mW/cm2 and recording time was 0.1 s.

Fig. 3
Fig. 3

Spatial-frequency dependence of the refractive-index modulation after a recording for 0.2 s with an intensity of 10 mW/cm2 at 200 (black), 350 (light gray), and 500 lines/mm (gray). The sample contains acrylamide and N,N′-methylenebisacrylamide in a 3/2 weight ratio.

Fig. 4
Fig. 4

Refractive-index dynamics at constant exposure of recording: time of recording and recording intensity are 2 s and 3.5 mW/cm2 (black), 0.5 s and 14 mW/cm2 (light gray), 0.1 s and 70 mW/cm2 (gray). The gratings are recorded at 532 nm and probed at 633 nm. Spatial frequency is (a) 500 lines/mm and (b) 2000 lines/mm.

Fig. 5
Fig. 5

Dependence of characteristic time for postprocess 2 on the fringe spacing. Data for the diffusion times are extracted after a fit of the recorded refractive-index modulations. The gratings are recorded for 0.5 s with an overall intensity of 10 mW/cm2. The recording wavelength is 532 nm, and the probing wavelength is 633 nm. Error bars are within the size of the symbols.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δn=λ cos θ arcsinηπd,
τd=1D0K2,

Metrics