Abstract

We use a gold-nanoparticle coated film to achieve highly spatially resolved biosensing that is based on localized surface-plasmon resonance. Unlike the planar gold film employed for conventional surface-plasmon resonance sensing, the gold-nanoparticle film relies exclusively on shifting of the peak extinction wavelength for detection of biointeraction and does not depend critically on the angle of incidence. These characteristics permit integration of surface-plasmon resonance with large-numerical-aperture optics to achieve biosensing with high sensitivity and spatial resolution as high as 25 μm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kretschman, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  2. A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  3. J. G. Gordon, S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499–506 (1980).
    [CrossRef]
  4. B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
    [CrossRef]
  5. C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmons resonance,” Sensors Actuators 3, 79–88 (1982).
    [CrossRef]
  6. D. G. Myszka, L. R. Rich, “Implementing surface plasmon resonance biosensor in drug discovery,” Pharm. Sci. Technol. Today 3, 310–317 (2000).
    [CrossRef]
  7. P. A. Lowe, T. J. H. Alwyn Clark, R. J. Davies, P. R. Edwards, T. Kinning, D. Yeung, “New approaches for the analysis of molecular recognition using the IASYS evanescent wave biosensor,” J. Mol. Recogn. 11, 194–199 (1998).
    [CrossRef]
  8. R. L. Rich, D. G. Myszka, “Survey of the 1999 surface plasmon resonance biosensor literature,” J. Mol. Recogn. 13, 388–407 (2000).
    [CrossRef]
  9. R. L. Rich, D. G. Myszka, “Survey of the year 2000 commercial optical biosensor literature,” J. Mol. Recogn. 14, 273–294 (2001).
    [CrossRef]
  10. P. Nilsson, B. Persson, M. Uhlen, P. A. Nygren, “Real-time monitoring of DNA manipulations using biosensor technology,” Anal. Biochem. 224, 400–408 (1995).
    [CrossRef] [PubMed]
  11. U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
    [PubMed]
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  13. A. D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982).
  14. T. Akimoto, S. Sasaki, K. Ikebukuro, I. Karube, “Refractive-index and thickness sensitivity in surface plasmon resonance spectroscopy,” Appl. Opt. 38, 4058–4064 (2000).
    [CrossRef]
  15. G. Padeletti, P. Fermo, “How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period,” Appl. Phys. A 76, 515–525 (2003).
    [CrossRef]
  16. R. K. Chang, A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  17. V. A. Shubin, W. Kim, V. P. Safonov, A. K. Sarychev, R. L. Armstrong, V. M. Shalaev, “Surface-plasmon-enhanced radiation effects in confined photonic systems,” J. Lightwave Technol. 17, 2183–2190 (1999).
    [CrossRef]
  18. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
    [CrossRef]
  19. T. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10,549–10,556 (2000).
    [CrossRef]
  20. M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
    [CrossRef]
  21. M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
    [CrossRef]
  22. H. Takei, M. Himmelhaus, T. Okamoto, “Absorption spectrum of surface bound cap-shaped Au particles,” Opt. Lett. 27, 342–344 (2002).
    [CrossRef]
  23. P. Török, F. J. Kao, Optical Imaging and Microscopy: Techniques and Advanced Systems (Springer-Verlag, Berlin, 2003).
    [CrossRef]
  24. J. M. Polak, S. Van Noorden, Introduction to Immunocytochemistry, 2nd ed. (Bios Scientific, Oxford, 1997).

2003

G. Padeletti, P. Fermo, “How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period,” Appl. Phys. A 76, 515–525 (2003).
[CrossRef]

2002

2001

M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

R. L. Rich, D. G. Myszka, “Survey of the year 2000 commercial optical biosensor literature,” J. Mol. Recogn. 14, 273–294 (2001).
[CrossRef]

2000

T. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10,549–10,556 (2000).
[CrossRef]

T. Akimoto, S. Sasaki, K. Ikebukuro, I. Karube, “Refractive-index and thickness sensitivity in surface plasmon resonance spectroscopy,” Appl. Opt. 38, 4058–4064 (2000).
[CrossRef]

D. G. Myszka, L. R. Rich, “Implementing surface plasmon resonance biosensor in drug discovery,” Pharm. Sci. Technol. Today 3, 310–317 (2000).
[CrossRef]

R. L. Rich, D. G. Myszka, “Survey of the 1999 surface plasmon resonance biosensor literature,” J. Mol. Recogn. 13, 388–407 (2000).
[CrossRef]

1999

1998

P. A. Lowe, T. J. H. Alwyn Clark, R. J. Davies, P. R. Edwards, T. Kinning, D. Yeung, “New approaches for the analysis of molecular recognition using the IASYS evanescent wave biosensor,” J. Mol. Recogn. 11, 194–199 (1998).
[CrossRef]

1996

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

1995

P. Nilsson, B. Persson, M. Uhlen, P. A. Nygren, “Real-time monitoring of DNA manipulations using biosensor technology,” Anal. Biochem. 224, 400–408 (1995).
[CrossRef] [PubMed]

1991

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

1983

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
[CrossRef]

1982

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmons resonance,” Sensors Actuators 3, 79–88 (1982).
[CrossRef]

1980

J. G. Gordon, S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499–506 (1980).
[CrossRef]

1968

E. Kretschman, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Akimoto, T.

Alwyn Clark, T. J. H.

P. A. Lowe, T. J. H. Alwyn Clark, R. J. Davies, P. R. Edwards, T. Kinning, D. Yeung, “New approaches for the analysis of molecular recognition using the IASYS evanescent wave biosensor,” J. Mol. Recogn. 11, 194–199 (1998).
[CrossRef]

Armstrong, R. L.

V. A. Shubin, W. Kim, V. P. Safonov, A. K. Sarychev, R. L. Armstrong, V. M. Shalaev, “Surface-plasmon-enhanced radiation effects in confined photonic systems,” J. Lightwave Technol. 17, 2183–2190 (1999).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Boardman, A. D.

A. D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982).

Campillo, A. J.

R. K. Chang, A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).

Chang, R. K.

R. K. Chang, A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).

Davies, R. J.

P. A. Lowe, T. J. H. Alwyn Clark, R. J. Davies, P. R. Edwards, T. Kinning, D. Yeung, “New approaches for the analysis of molecular recognition using the IASYS evanescent wave biosensor,” J. Mol. Recogn. 11, 194–199 (1998).
[CrossRef]

Edwards, P. R.

P. A. Lowe, T. J. H. Alwyn Clark, R. J. Davies, P. R. Edwards, T. Kinning, D. Yeung, “New approaches for the analysis of molecular recognition using the IASYS evanescent wave biosensor,” J. Mol. Recogn. 11, 194–199 (1998).
[CrossRef]

Ernst, S.

J. G. Gordon, S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499–506 (1980).
[CrossRef]

Fägerstam, L.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Fermo, P.

G. Padeletti, P. Fermo, “How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period,” Appl. Phys. A 76, 515–525 (2003).
[CrossRef]

Gordon, J. G.

J. G. Gordon, S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499–506 (1980).
[CrossRef]

Haynes, C. L.

T. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10,549–10,556 (2000).
[CrossRef]

Himmelhaus, M.

Ikebukuro, K.

Ivarsson, B.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Jensen, T.

T. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10,549–10,556 (2000).
[CrossRef]

Johnsson, B.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Jönsson, U.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Kao, F. J.

P. Török, F. J. Kao, Optical Imaging and Microscopy: Techniques and Advanced Systems (Springer-Verlag, Berlin, 2003).
[CrossRef]

Karlsson, R.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Karube, I.

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[CrossRef]

Kim, W.

V. A. Shubin, W. Kim, V. P. Safonov, A. K. Sarychev, R. L. Armstrong, V. M. Shalaev, “Surface-plasmon-enhanced radiation effects in confined photonic systems,” J. Lightwave Technol. 17, 2183–2190 (1999).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Kinning, T.

P. A. Lowe, T. J. H. Alwyn Clark, R. J. Davies, P. R. Edwards, T. Kinning, D. Yeung, “New approaches for the analysis of molecular recognition using the IASYS evanescent wave biosensor,” J. Mol. Recogn. 11, 194–199 (1998).
[CrossRef]

Kretschman, E.

E. Kretschman, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Liedberg, B.

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
[CrossRef]

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmons resonance,” Sensors Actuators 3, 79–88 (1982).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmons resonance,” Sensors Actuators 3, 79–88 (1982).
[CrossRef]

Löfåas, S.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Lowe, P. A.

P. A. Lowe, T. J. H. Alwyn Clark, R. J. Davies, P. R. Edwards, T. Kinning, D. Yeung, “New approaches for the analysis of molecular recognition using the IASYS evanescent wave biosensor,” J. Mol. Recogn. 11, 194–199 (1998).
[CrossRef]

Lundh, K.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Lundstrom, I.

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
[CrossRef]

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

T. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10,549–10,556 (2000).
[CrossRef]

Malmqvist, M.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Markel, V. A.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Myszka, D. G.

R. L. Rich, D. G. Myszka, “Survey of the year 2000 commercial optical biosensor literature,” J. Mol. Recogn. 14, 273–294 (2001).
[CrossRef]

R. L. Rich, D. G. Myszka, “Survey of the 1999 surface plasmon resonance biosensor literature,” J. Mol. Recogn. 13, 388–407 (2000).
[CrossRef]

D. G. Myszka, L. R. Rich, “Implementing surface plasmon resonance biosensor in drug discovery,” Pharm. Sci. Technol. Today 3, 310–317 (2000).
[CrossRef]

Nilsson, P.

P. Nilsson, B. Persson, M. Uhlen, P. A. Nygren, “Real-time monitoring of DNA manipulations using biosensor technology,” Anal. Biochem. 224, 400–408 (1995).
[CrossRef] [PubMed]

Nygren, P. A.

P. Nilsson, B. Persson, M. Uhlen, P. A. Nygren, “Real-time monitoring of DNA manipulations using biosensor technology,” Anal. Biochem. 224, 400–408 (1995).
[CrossRef] [PubMed]

Nylander, C.

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
[CrossRef]

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmons resonance,” Sensors Actuators 3, 79–88 (1982).
[CrossRef]

Ó´stlin, H.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Okamoto, T.

Otto, A.

A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Padeletti, G.

G. Padeletti, P. Fermo, “How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period,” Appl. Phys. A 76, 515–525 (2003).
[CrossRef]

Persson, B.

P. Nilsson, B. Persson, M. Uhlen, P. A. Nygren, “Real-time monitoring of DNA manipulations using biosensor technology,” Anal. Biochem. 224, 400–408 (1995).
[CrossRef] [PubMed]

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Polak, J. M.

J. M. Polak, S. Van Noorden, Introduction to Immunocytochemistry, 2nd ed. (Bios Scientific, Oxford, 1997).

Raether, H.

E. Kretschman, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Rich, L. R.

D. G. Myszka, L. R. Rich, “Implementing surface plasmon resonance biosensor in drug discovery,” Pharm. Sci. Technol. Today 3, 310–317 (2000).
[CrossRef]

Rich, R. L.

R. L. Rich, D. G. Myszka, “Survey of the year 2000 commercial optical biosensor literature,” J. Mol. Recogn. 14, 273–294 (2001).
[CrossRef]

R. L. Rich, D. G. Myszka, “Survey of the 1999 surface plasmon resonance biosensor literature,” J. Mol. Recogn. 13, 388–407 (2000).
[CrossRef]

Rönnberg, I.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Roos, H.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Safonov, V. P.

Sarychev, A. K.

Sasaki, S.

Schatz, G. C.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[CrossRef]

Shalaev, V. M.

V. A. Shubin, W. Kim, V. P. Safonov, A. K. Sarychev, R. L. Armstrong, V. M. Shalaev, “Surface-plasmon-enhanced radiation effects in confined photonic systems,” J. Lightwave Technol. 17, 2183–2190 (1999).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Shubin, V. A.

Sjölander, S.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Ståahlberg, R.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Stechel, E. B.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Stenberg, E.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Takei, H.

Török, P.

P. Török, F. J. Kao, Optical Imaging and Microscopy: Techniques and Advanced Systems (Springer-Verlag, Berlin, 2003).
[CrossRef]

Uhlen, M.

P. Nilsson, B. Persson, M. Uhlen, P. A. Nygren, “Real-time monitoring of DNA manipulations using biosensor technology,” Anal. Biochem. 224, 400–408 (1995).
[CrossRef] [PubMed]

Urbaniczky, C.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

Van Duyne, R. P.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

T. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10,549–10,556 (2000).
[CrossRef]

Van Noorden, S.

J. M. Polak, S. Van Noorden, Introduction to Immunocytochemistry, 2nd ed. (Bios Scientific, Oxford, 1997).

Yeung, D.

P. A. Lowe, T. J. H. Alwyn Clark, R. J. Davies, P. R. Edwards, T. Kinning, D. Yeung, “New approaches for the analysis of molecular recognition using the IASYS evanescent wave biosensor,” J. Mol. Recogn. 11, 194–199 (1998).
[CrossRef]

Anal. Biochem.

P. Nilsson, B. Persson, M. Uhlen, P. A. Nygren, “Real-time monitoring of DNA manipulations using biosensor technology,” Anal. Biochem. 224, 400–408 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. A

G. Padeletti, P. Fermo, “How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period,” Appl. Phys. A 76, 515–525 (2003).
[CrossRef]

BioTechniques

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Ó́stlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
[PubMed]

J. Am. Chem. Soc.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

J. Lightwave Technol.

J. Mol. Recogn.

P. A. Lowe, T. J. H. Alwyn Clark, R. J. Davies, P. R. Edwards, T. Kinning, D. Yeung, “New approaches for the analysis of molecular recognition using the IASYS evanescent wave biosensor,” J. Mol. Recogn. 11, 194–199 (1998).
[CrossRef]

R. L. Rich, D. G. Myszka, “Survey of the 1999 surface plasmon resonance biosensor literature,” J. Mol. Recogn. 13, 388–407 (2000).
[CrossRef]

R. L. Rich, D. G. Myszka, “Survey of the year 2000 commercial optical biosensor literature,” J. Mol. Recogn. 14, 273–294 (2001).
[CrossRef]

J. Phys. Chem. B

T. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10,549–10,556 (2000).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[CrossRef]

Opt. Lett.

Pharm. Sci. Technol. Today

D. G. Myszka, L. R. Rich, “Implementing surface plasmon resonance biosensor in drug discovery,” Pharm. Sci. Technol. Today 3, 310–317 (2000).
[CrossRef]

Phys. Rev. B

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Sensors Actuators

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
[CrossRef]

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmons resonance,” Sensors Actuators 3, 79–88 (1982).
[CrossRef]

Surf. Sci.

J. G. Gordon, S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499–506 (1980).
[CrossRef]

Z. Naturforsch. A

E. Kretschman, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Z. Phys.

A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

A. D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982).

R. K. Chang, A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).

P. Török, F. J. Kao, Optical Imaging and Microscopy: Techniques and Advanced Systems (Springer-Verlag, Berlin, 2003).
[CrossRef]

J. M. Polak, S. Van Noorden, Introduction to Immunocytochemistry, 2nd ed. (Bios Scientific, Oxford, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the micro-SPR setup. The projected image of the core of the illuminating fiber is shown in the inset and was taken under dark-field illumination.

Fig. 2
Fig. 2

(a) Typical absorption spectrum measured with the fiber-coupled, CCD-based spectrometer. Note that the flat section of the profile at wavelengths longer than 575 nm indicates saturation of the spectrometer. (b) Corresponding spectral profiles of the O.D. and a least-squares nonlinear fit based on a pseudo-Voigt function.

Fig. 3
Fig. 3

Absorption spectra as functions of (a) various illumination intensities and (b) various integration times from 30 to 250 ms.

Fig. 4
Fig. 4

Absorption spectra (a) without and (b) with a cyan color filter. The symmetry of the spectral profiles is improved substantially with the installation of the filter but at the cost of reduced photon flux.

Fig. 5
Fig. 5

Absorption spectra as functions of various NA objectives from 0.25 to 0.80.

Fig. 6
Fig. 6

Kinetic measurements of binding of streptavidin and antistreptavidin. Binding and unbinding are reflected in the shift of the peak extinction wavelength.

Tables (2)

Tables Icon

Table 1 Spatial Resolution and Fluctuation of Peak Extinction Wavelength for Various Combinations of Optical Fibers and Imaging Objectives

Tables Icon

Table 2 Comparison of Conventional SPR and Gold-Nanoparticle-Based LSPR

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

fλ=A+Bλ+Cmμ2πωL4λ-λc2+ωL2+1-mμ4 ln 2πωG21/2 exp-4 ln 2λ-λcωG2.

Metrics