Abstract

Based on the reflection-type polarization measurement of second-harmonic-generation (SHG) light induced by collagen molecules, we are able to determine the collagen fiber orientation in human tissues taken from a cadaver. The resulting SHG radar graph shows the direction of the absolute orientation and the degree of organization of collagen fibers. To evaluate the probing sensitivity to the collagen orientation, we compared the proposed method with other polarimetric methods. Use of the proposed method revealed characteristic orientation differences among collagen fibers and demonstrated significant inhomogeneity with respect to the distribution of collagen orientation in human dentin. The proposed method provides a powerful research and diagnostic tool for examining the collagen orientation in human tissues.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Eyden, M. Tzaphlidou, “Structural variations of collagen in normal and pathological tissues: role of electron microscopy,” Micron 32, 287–300 (2001).
    [CrossRef]
  2. V. J. James, L. Delbridge, S. V. McLennan, D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
    [CrossRef] [PubMed]
  3. S. Osaki, “Distribution map of collagen fiber orientation in a whole calf leather,” Anat. Rec. 254, 147–152 (1999).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. J. M. Schmitt, M. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93 (1995).
    [CrossRef] [PubMed]
  6. A. M. Rollins, R. Ung-Arunyawee, A. Chak, R. C. K. Wong, K. Kobayashi, M. V. Sivak, J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358–1360 (1999).
    [CrossRef]
  7. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  8. S. Fine, W. P. Hansen, “Optical second harmonic generation in biological tissues,” Appl. Opt. 10, 2350–2353 (1971).
    [CrossRef] [PubMed]
  9. A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [CrossRef]
  10. S. Roth, I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271–1290 (1981).
    [CrossRef] [PubMed]
  11. B. M. Kim, J. Eichler, L. B. Da Silva, “Frequency doubling of ultrashort laser pulses in biological tissues,” Appl. Opt. 38, 7145–7150 (1999).
    [CrossRef]
  12. E. Georgiou, T. Theodossiou, V. Hovhannisyan, K. Politopoulos, G. S. Rapti, D. Yova, “Second and third harmonic generation in type I collagen, by nanosecond laser radiation, over a broad spectral region,” Opt. Commun. 176, 253–260 (2000).
    [CrossRef]
  13. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
    [CrossRef]
  14. P. Stroller, K. M. Reiser, P. M. Celliers, A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82, 3330–3342 (2002).
    [CrossRef]
  15. T. Yasui, K. Nakamoto, Y. Tohno, T. Araki, “Laser induced dynamic emission sensitive to the conformation of tissue collagen,” in Proceeding of Switzerland-Japan Workshop on New Directions in Cellular and Tissues Biomechanics,J. J. Meister, K. Hayashi eds. (Switzerland-Japan Workshop, Switzerland, 2001), p. 85.
  16. T. Yasui, K. Shimabayashi, H. Kawaguchi, Y. Tohno, T. Iwata, T. Araki, “Polarimetry of second-harmonic-generation light sensitive to orientation of tissue collagen,” in Abstract of International Conference on Optics Within Life Science VII,T. Tschudi, ed. (International Society on Optics Within Life Sciences, Switzerland, 2002), p. 19.
  17. P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
    [CrossRef]
  18. A. T. Yeh, N. Nassif, A. Zoumi, B. J. Tromberg, “Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence,” Opt. Lett. 27, 2082–2084 (2002).
    [CrossRef]
  19. T. Yasui, Y. Tohno, T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259–264 (2004).
    [CrossRef] [PubMed]
  20. D. J. Maitland, “Dynamic measurements of tissue birefringence: theory and experiments,” Ph.D. dissertation (Northwestern University, Evanston, Ill., 1995).
  21. W. R. Zipfel, R. M. Williams, R. Chritie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Nat. Acad. Sci. USA 100, 7075–7080 (2003).
    [CrossRef] [PubMed]
  22. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
    [CrossRef] [PubMed]
  23. H. Matsumoto, S. Kitamura, T. Araki, “Applications of fluorescence microscopy to studies of dental hard tissue,” Front. Med. Biol. Eng. 10, 269–284 (2001).
    [CrossRef] [PubMed]

2004

T. Yasui, Y. Tohno, T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259–264 (2004).
[CrossRef] [PubMed]

2003

W. R. Zipfel, R. M. Williams, R. Chritie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Nat. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef] [PubMed]

2002

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

P. Stroller, K. M. Reiser, P. M. Celliers, A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82, 3330–3342 (2002).
[CrossRef]

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[CrossRef]

A. T. Yeh, N. Nassif, A. Zoumi, B. J. Tromberg, “Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence,” Opt. Lett. 27, 2082–2084 (2002).
[CrossRef]

2001

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

H. Matsumoto, S. Kitamura, T. Araki, “Applications of fluorescence microscopy to studies of dental hard tissue,” Front. Med. Biol. Eng. 10, 269–284 (2001).
[CrossRef] [PubMed]

B. Eyden, M. Tzaphlidou, “Structural variations of collagen in normal and pathological tissues: role of electron microscopy,” Micron 32, 287–300 (2001).
[CrossRef]

2000

E. Georgiou, T. Theodossiou, V. Hovhannisyan, K. Politopoulos, G. S. Rapti, D. Yova, “Second and third harmonic generation in type I collagen, by nanosecond laser radiation, over a broad spectral region,” Opt. Commun. 176, 253–260 (2000).
[CrossRef]

1999

1995

J. M. Schmitt, M. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93 (1995).
[CrossRef] [PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

V. J. James, L. Delbridge, S. V. McLennan, D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
[CrossRef] [PubMed]

1990

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1981

S. Roth, I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271–1290 (1981).
[CrossRef] [PubMed]

1971

Araki, T.

T. Yasui, Y. Tohno, T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259–264 (2004).
[CrossRef] [PubMed]

H. Matsumoto, S. Kitamura, T. Araki, “Applications of fluorescence microscopy to studies of dental hard tissue,” Front. Med. Biol. Eng. 10, 269–284 (2001).
[CrossRef] [PubMed]

T. Yasui, K. Nakamoto, Y. Tohno, T. Araki, “Laser induced dynamic emission sensitive to the conformation of tissue collagen,” in Proceeding of Switzerland-Japan Workshop on New Directions in Cellular and Tissues Biomechanics,J. J. Meister, K. Hayashi eds. (Switzerland-Japan Workshop, Switzerland, 2001), p. 85.

T. Yasui, K. Shimabayashi, H. Kawaguchi, Y. Tohno, T. Iwata, T. Araki, “Polarimetry of second-harmonic-generation light sensitive to orientation of tissue collagen,” in Abstract of International Conference on Optics Within Life Science VII,T. Tschudi, ed. (International Society on Optics Within Life Sciences, Switzerland, 2002), p. 19.

Bonner, R. F.

J. M. Schmitt, M. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93 (1995).
[CrossRef] [PubMed]

Campagnola, P. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

Celliers, P. M.

P. Stroller, K. M. Reiser, P. M. Celliers, A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82, 3330–3342 (2002).
[CrossRef]

Chak, A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chritie, R.

W. R. Zipfel, R. M. Williams, R. Chritie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Nat. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef] [PubMed]

Clark, H. A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

Delbridge, L.

V. J. James, L. Delbridge, S. V. McLennan, D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Eichler, J.

Eyden, B.

B. Eyden, M. Tzaphlidou, “Structural variations of collagen in normal and pathological tissues: role of electron microscopy,” Micron 32, 287–300 (2001).
[CrossRef]

Fine, S.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Freund, I.

S. Roth, I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271–1290 (1981).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Georgiou, E.

E. Georgiou, T. Theodossiou, V. Hovhannisyan, K. Politopoulos, G. S. Rapti, D. Yova, “Second and third harmonic generation in type I collagen, by nanosecond laser radiation, over a broad spectral region,” Opt. Commun. 176, 253–260 (2000).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hansen, W. P.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

Hovhannisyan, V.

E. Georgiou, T. Theodossiou, V. Hovhannisyan, K. Politopoulos, G. S. Rapti, D. Yova, “Second and third harmonic generation in type I collagen, by nanosecond laser radiation, over a broad spectral region,” Opt. Commun. 176, 253–260 (2000).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Chritie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Nat. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef] [PubMed]

Iwata, T.

T. Yasui, K. Shimabayashi, H. Kawaguchi, Y. Tohno, T. Iwata, T. Araki, “Polarimetry of second-harmonic-generation light sensitive to orientation of tissue collagen,” in Abstract of International Conference on Optics Within Life Science VII,T. Tschudi, ed. (International Society on Optics Within Life Sciences, Switzerland, 2002), p. 19.

Izatt, J. A.

James, V. J.

V. J. James, L. Delbridge, S. V. McLennan, D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
[CrossRef] [PubMed]

Kawaguchi, H.

T. Yasui, K. Shimabayashi, H. Kawaguchi, Y. Tohno, T. Iwata, T. Araki, “Polarimetry of second-harmonic-generation light sensitive to orientation of tissue collagen,” in Abstract of International Conference on Optics Within Life Science VII,T. Tschudi, ed. (International Society on Optics Within Life Sciences, Switzerland, 2002), p. 19.

Kim, B. M.

Kim, B.-M.

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[CrossRef]

Kitamura, S.

H. Matsumoto, S. Kitamura, T. Araki, “Applications of fluorescence microscopy to studies of dental hard tissue,” Front. Med. Biol. Eng. 10, 269–284 (2001).
[CrossRef] [PubMed]

Kobayashi, K.

Lewis, A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Loew, L. M.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

Maitland, D. J.

D. J. Maitland, “Dynamic measurements of tissue birefringence: theory and experiments,” Ph.D. dissertation (Northwestern University, Evanston, Ill., 1995).

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

Matsumoto, H.

H. Matsumoto, S. Kitamura, T. Araki, “Applications of fluorescence microscopy to studies of dental hard tissue,” Front. Med. Biol. Eng. 10, 269–284 (2001).
[CrossRef] [PubMed]

McLennan, S. V.

V. J. James, L. Delbridge, S. V. McLennan, D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
[CrossRef] [PubMed]

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

Mohler, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

Nakamoto, K.

T. Yasui, K. Nakamoto, Y. Tohno, T. Araki, “Laser induced dynamic emission sensitive to the conformation of tissue collagen,” in Proceeding of Switzerland-Japan Workshop on New Directions in Cellular and Tissues Biomechanics,J. J. Meister, K. Hayashi eds. (Switzerland-Japan Workshop, Switzerland, 2001), p. 85.

Nassif, N.

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Chritie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Nat. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef] [PubMed]

Osaki, S.

S. Osaki, “Distribution map of collagen fiber orientation in a whole calf leather,” Anat. Rec. 254, 147–152 (1999).
[CrossRef] [PubMed]

Politopoulos, K.

E. Georgiou, T. Theodossiou, V. Hovhannisyan, K. Politopoulos, G. S. Rapti, D. Yova, “Second and third harmonic generation in type I collagen, by nanosecond laser radiation, over a broad spectral region,” Opt. Commun. 176, 253–260 (2000).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rapti, G. S.

E. Georgiou, T. Theodossiou, V. Hovhannisyan, K. Politopoulos, G. S. Rapti, D. Yova, “Second and third harmonic generation in type I collagen, by nanosecond laser radiation, over a broad spectral region,” Opt. Commun. 176, 253–260 (2000).
[CrossRef]

Reiser, K. M.

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[CrossRef]

P. Stroller, K. M. Reiser, P. M. Celliers, A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82, 3330–3342 (2002).
[CrossRef]

Rollins, A. M.

Roth, S.

S. Roth, I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271–1290 (1981).
[CrossRef] [PubMed]

Rubenchik, A. M.

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[CrossRef]

P. Stroller, K. M. Reiser, P. M. Celliers, A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82, 3330–3342 (2002).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, M. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93 (1995).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Shimabayashi, K.

T. Yasui, K. Shimabayashi, H. Kawaguchi, Y. Tohno, T. Iwata, T. Araki, “Polarimetry of second-harmonic-generation light sensitive to orientation of tissue collagen,” in Abstract of International Conference on Optics Within Life Science VII,T. Tschudi, ed. (International Society on Optics Within Life Sciences, Switzerland, 2002), p. 19.

Silva, L. B. Da

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[CrossRef]

B. M. Kim, J. Eichler, L. B. Da Silva, “Frequency doubling of ultrashort laser pulses in biological tissues,” Appl. Opt. 38, 7145–7150 (1999).
[CrossRef]

Sivak, M. V.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Stroller, P.

P. Stroller, K. M. Reiser, P. M. Celliers, A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82, 3330–3342 (2002).
[CrossRef]

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

Theodossiou, T.

E. Georgiou, T. Theodossiou, V. Hovhannisyan, K. Politopoulos, G. S. Rapti, D. Yova, “Second and third harmonic generation in type I collagen, by nanosecond laser radiation, over a broad spectral region,” Opt. Commun. 176, 253–260 (2000).
[CrossRef]

Tohno, Y.

T. Yasui, Y. Tohno, T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259–264 (2004).
[CrossRef] [PubMed]

T. Yasui, K. Shimabayashi, H. Kawaguchi, Y. Tohno, T. Iwata, T. Araki, “Polarimetry of second-harmonic-generation light sensitive to orientation of tissue collagen,” in Abstract of International Conference on Optics Within Life Science VII,T. Tschudi, ed. (International Society on Optics Within Life Sciences, Switzerland, 2002), p. 19.

T. Yasui, K. Nakamoto, Y. Tohno, T. Araki, “Laser induced dynamic emission sensitive to the conformation of tissue collagen,” in Proceeding of Switzerland-Japan Workshop on New Directions in Cellular and Tissues Biomechanics,J. J. Meister, K. Hayashi eds. (Switzerland-Japan Workshop, Switzerland, 2001), p. 85.

Tromberg, B. J.

Tzaphlidou, M.

B. Eyden, M. Tzaphlidou, “Structural variations of collagen in normal and pathological tissues: role of electron microscopy,” Micron 32, 287–300 (2001).
[CrossRef]

Ung-Arunyawee, R.

Webb, W. W.

W. R. Zipfel, R. M. Williams, R. Chritie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Nat. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Chritie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Nat. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef] [PubMed]

Wong, R. C. K.

Xie, X. S.

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Yadlowsky, M.

J. M. Schmitt, M. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93 (1995).
[CrossRef] [PubMed]

Yasui, T.

T. Yasui, Y. Tohno, T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259–264 (2004).
[CrossRef] [PubMed]

T. Yasui, K. Shimabayashi, H. Kawaguchi, Y. Tohno, T. Iwata, T. Araki, “Polarimetry of second-harmonic-generation light sensitive to orientation of tissue collagen,” in Abstract of International Conference on Optics Within Life Science VII,T. Tschudi, ed. (International Society on Optics Within Life Sciences, Switzerland, 2002), p. 19.

T. Yasui, K. Nakamoto, Y. Tohno, T. Araki, “Laser induced dynamic emission sensitive to the conformation of tissue collagen,” in Proceeding of Switzerland-Japan Workshop on New Directions in Cellular and Tissues Biomechanics,J. J. Meister, K. Hayashi eds. (Switzerland-Japan Workshop, Switzerland, 2001), p. 85.

Yeh, A. T.

Yova, D.

E. Georgiou, T. Theodossiou, V. Hovhannisyan, K. Politopoulos, G. S. Rapti, D. Yova, “Second and third harmonic generation in type I collagen, by nanosecond laser radiation, over a broad spectral region,” Opt. Commun. 176, 253–260 (2000).
[CrossRef]

Yue, D. K.

V. J. James, L. Delbridge, S. V. McLennan, D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
[CrossRef] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, R. Chritie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Nat. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef] [PubMed]

Zoumi, A.

Zumbusch, A.

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Anat. Rec.

S. Osaki, “Distribution map of collagen fiber orientation in a whole calf leather,” Anat. Rec. 254, 147–152 (1999).
[CrossRef] [PubMed]

Appl. Opt.

Biophys. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002).
[CrossRef]

P. Stroller, K. M. Reiser, P. M. Celliers, A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82, 3330–3342 (2002).
[CrossRef]

Biopolymers

S. Roth, I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271–1290 (1981).
[CrossRef] [PubMed]

Dermatology

J. M. Schmitt, M. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93 (1995).
[CrossRef] [PubMed]

Diabetes

V. J. James, L. Delbridge, S. V. McLennan, D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
[CrossRef] [PubMed]

Front. Med. Biol. Eng.

H. Matsumoto, S. Kitamura, T. Araki, “Applications of fluorescence microscopy to studies of dental hard tissue,” Front. Med. Biol. Eng. 10, 269–284 (2001).
[CrossRef] [PubMed]

J. Biomed. Opt.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

T. Yasui, Y. Tohno, T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259–264 (2004).
[CrossRef] [PubMed]

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[CrossRef]

Micron

B. Eyden, M. Tzaphlidou, “Structural variations of collagen in normal and pathological tissues: role of electron microscopy,” Micron 32, 287–300 (2001).
[CrossRef]

Opt. Commun.

E. Georgiou, T. Theodossiou, V. Hovhannisyan, K. Politopoulos, G. S. Rapti, D. Yova, “Second and third harmonic generation in type I collagen, by nanosecond laser radiation, over a broad spectral region,” Opt. Commun. 176, 253–260 (2000).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Proc. Nat. Acad. Sci. USA

W. R. Zipfel, R. M. Williams, R. Chritie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Nat. Acad. Sci. USA 100, 7075–7080 (2003).
[CrossRef] [PubMed]

Science

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

T. Yasui, K. Nakamoto, Y. Tohno, T. Araki, “Laser induced dynamic emission sensitive to the conformation of tissue collagen,” in Proceeding of Switzerland-Japan Workshop on New Directions in Cellular and Tissues Biomechanics,J. J. Meister, K. Hayashi eds. (Switzerland-Japan Workshop, Switzerland, 2001), p. 85.

T. Yasui, K. Shimabayashi, H. Kawaguchi, Y. Tohno, T. Iwata, T. Araki, “Polarimetry of second-harmonic-generation light sensitive to orientation of tissue collagen,” in Abstract of International Conference on Optics Within Life Science VII,T. Tschudi, ed. (International Society on Optics Within Life Sciences, Switzerland, 2002), p. 19.

D. J. Maitland, “Dynamic measurements of tissue birefringence: theory and experiments,” Ph.D. dissertation (Northwestern University, Evanston, Ill., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: ML, mode-locked; M, mirror; L2, lens; Ref., reference input; Sig., signal input. See text for other definitions. For SHG polarimetry, polarizations of the incident laser light and the detected SHG light are simultaneously rotated while they are kept parallel to each other.

Fig. 2
Fig. 2

Relationship between collagen orientation and laser polarization with respect to the generation of SHG light.

Fig. 3
Fig. 3

Comparison of the SHG polarimetry with other polarimetric methods: (a) reflected fundamental light, (b) transmitted fundamental light, (c) TPEAF, and (d) SHG. The human Achilles tendon is used as a sample with an uniaxial collagen orientation. Gray arrows in each graph indicate the actual direction of the collagen orientation.

Fig. 4
Fig. 4

SHG radar graphs for human tissue samples: (a) human dermis, (b) human dentin, (c) and (d) human talus, (e) chicken skin, and (f) collagen sponge. Gray arrows in each graph indicate the expected direction of the collagen orientation.

Fig. 5
Fig. 5

Distribution of the collagen orientation in human dentin. (a) Sketch of a cross section of a tooth. The analytical spots and growth line in the dentin tissue are shown. (b) Results of the SHG polarimetry on four analytical spots.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P2=χ2E2,
χ2=Nsβ,

Metrics