Abstract

Fiber-optic probes are widely used in optical spectroscopy of biological tissues and other turbid media. Only limited information exists, however, on the ways in which the illumination-collection geometry and the overall probe design influence the interrogation of media. We have investigated both experimentally and computationally the effect of probe-to-target distance (PTD) on the diffuse reflectance collected from an isotropically (Lambertian) scattering target and an agar-based tissue phantom. Studies were conducted with three probes characterized by either common (single-fiber) or separate (two bifurcated multifiber probes) illumination and collection channels. This study demonstrates that PTD, probe design, and tissue scattering anisotropy influence the extent of the transport of light into the medium, the light-collection efficiency, and the sampling volume of collected light. The findings can be applied toward optimization of fiber-optic probe designs for quantitative optical spectroscopy of turbid media including biological tissues.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
    [CrossRef] [PubMed]
  2. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richardskortum, “In-vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10,193–10,197 (1994).
    [CrossRef]
  3. L. S. Greek, H. G. Schulze, C. A. Haynes, M. W. Blades, R. F. B. Turner, “Rational design of fiber-optic probes for visible and pulsed-ultraviolet resonance Raman spectroscopy,” Appl. Opt. 35, 4086–4095 (1996).
    [CrossRef] [PubMed]
  4. M. G. Shim, B. C. Wilson, E. Marple, M. Wach, “Study of fiber-optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53, 619–627 (1999).
    [CrossRef]
  5. A. Mahadevan-Jansen, W. F. Mitchell, N. Ramanujam, U. Utzinger, R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427–431 (1998).
    [CrossRef] [PubMed]
  6. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
    [CrossRef]
  7. M. Canpolat, J. R. Mourant, “Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source-detector separation,” Appl. Opt. 39, 6508–6514 (2000).
    [CrossRef]
  8. S. P. Lin, L. H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997).
    [CrossRef] [PubMed]
  9. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
    [CrossRef] [PubMed]
  10. T. P. Moffitt, S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001).
    [CrossRef]
  11. A. J. Welch, M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
    [CrossRef]
  12. Z. Y. Zhu, M. C. Yappert, “Determination of the effective depth for double-fiber fluorometric sensors,” Appl. Spectrosc. 46, 919–924 (1992).
    [CrossRef]
  13. Z. Y. Zhu, M. C. Yappert, “Determination of effective depth and equivalent pathlength for a single-fiber fluorometric sensor,” Appl. Spectrosc. 46, 912–918 (1992).
    [CrossRef]
  14. T. F. Cooney, H. T. Skinner, S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. 2. Tests of single-fiber, lensed, and flat- and bevel-tip multi-fiber probes,” Appl. Spectrosc. 50, 849–860 (1996).
    [CrossRef]
  15. T. F. Cooney, H. T. Skinner, S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. 1. Model for liquids and transparent solids,” Appl. Spectrosc. 50, 836–848 (1996).
    [CrossRef]
  16. P. Plaza, N. Q. Dao, M. Jouan, H. Fevrier, H. Saisse, “Simulation and optimization of adjacent optical fiber sensors,” Appl. Opt. 25, 3448–3454 (1986).
    [CrossRef]
  17. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
    [CrossRef]
  18. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
    [CrossRef] [PubMed]
  19. T. J. Pfefer, L. S. Matchette, A. M. Ross, M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28, 120–122 (2003).
    [CrossRef] [PubMed]
  20. C. F. Zhu, Q. Liu, N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003).
    [CrossRef] [PubMed]
  21. Q. Liu, C. F. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
    [CrossRef] [PubMed]
  22. P. R. Bargo, S. A. Prahl, S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003).
    [CrossRef] [PubMed]
  23. S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, B. Gelebart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).
    [CrossRef]
  24. R. Weersink, M. S. Patterson, K. Diamond, S. Silver, N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique,” Appl. Opt. 40, 6389–6395 (2001).
    [CrossRef]
  25. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
    [CrossRef]
  26. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
    [CrossRef] [PubMed]
  27. B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
    [CrossRef]
  28. J. D. Pitts, M. A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution,” Rev. Sci. Instrum. 72, 3061–3072 (2001).
    [CrossRef]
  29. M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu, M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001).
    [CrossRef]
  30. L. Marcu, M. C. Fishbein, J. M. I. Maarek, W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol. 21, 1244–1250 (2001).
    [CrossRef] [PubMed]
  31. L. Marcu, W. S. Grundfest, J. M. I. Maarek, “Photobleaching of arterial fluorescent compounds: characterization of elastin, collagen and cholesterol time-resolved spectra during prolonged ultraviolet irradiation,” Photochem. Photobiol. 69, 713–721 (1999).
    [CrossRef] [PubMed]
  32. J. M. I. Maarek, L. Marcu, M. C. Fishbein, W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med. 27, 241–254 (2000).
    [CrossRef] [PubMed]
  33. S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. Muller, ed., Volume 1035 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.
  34. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues—principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
    [CrossRef]
  35. L. I. Grossweiner, J. L. Karagiannes, L. R. Jones, P. W. Johnson, “Reflection and transmission coefficients in plane-parallel layers with refractive-index mismatch,” Appl. Opt. 31, 106–109 (1992).
    [CrossRef] [PubMed]
  36. L. R. Jones, L. I. Grossweiner, “Singlet oxygen generation by photofrin(R) in homogeneous and light-scattering media,” J. Photochem. Photobiol. B 26, 249–256 (1994).
    [CrossRef] [PubMed]
  37. L. L. Carter, E. D. Cashwell, “Particle transport simulation with the Monte Carlo method,” ERDA Critical Review Series, TID-26607 (U.S. Energy Research and Development Administration, Technical Information Center, Oak Ridge, Tenn., 1975).
  38. L. Quan, N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett. 27, 104–106 (2002).
    [CrossRef]
  39. K. Vishwanath, B. Pogue, M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002).
    [CrossRef] [PubMed]
  40. S. L. Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).
    [CrossRef] [PubMed]

2003 (5)

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

C. F. Zhu, Q. Liu, N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003).
[CrossRef] [PubMed]

Q. Liu, C. F. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, A. M. Ross, M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28, 120–122 (2003).
[CrossRef] [PubMed]

P. R. Bargo, S. A. Prahl, S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003).
[CrossRef] [PubMed]

2002 (3)

2001 (6)

J. D. Pitts, M. A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution,” Rev. Sci. Instrum. 72, 3061–3072 (2001).
[CrossRef]

L. Marcu, M. C. Fishbein, J. M. I. Maarek, W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol. 21, 1244–1250 (2001).
[CrossRef] [PubMed]

T. P. Moffitt, S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu, M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001).
[CrossRef]

R. Weersink, M. S. Patterson, K. Diamond, S. Silver, N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique,” Appl. Opt. 40, 6389–6395 (2001).
[CrossRef]

2000 (2)

M. Canpolat, J. R. Mourant, “Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source-detector separation,” Appl. Opt. 39, 6508–6514 (2000).
[CrossRef]

J. M. I. Maarek, L. Marcu, M. C. Fishbein, W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med. 27, 241–254 (2000).
[CrossRef] [PubMed]

1999 (3)

1998 (3)

1997 (3)

1996 (3)

1994 (2)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richardskortum, “In-vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10,193–10,197 (1994).
[CrossRef]

L. R. Jones, L. I. Grossweiner, “Singlet oxygen generation by photofrin(R) in homogeneous and light-scattering media,” J. Photochem. Photobiol. B 26, 249–256 (1994).
[CrossRef] [PubMed]

1992 (3)

1990 (1)

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues—principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

1989 (2)

S. L. Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).
[CrossRef] [PubMed]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef] [PubMed]

1986 (1)

Alfano, R. R.

B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Angel, S. M.

Avrillier, S.

Backman, V. M.

Bargo, P. R.

Bigio, I. J.

Blades, M. W.

Burke, G.

Canpolat, M.

Carter, L. L.

L. L. Carter, E. D. Cashwell, “Particle transport simulation with the Monte Carlo method,” ERDA Critical Review Series, TID-26607 (U.S. Energy Research and Development Administration, Technical Information Center, Oak Ridge, Tenn., 1975).

Cashwell, E. D.

L. L. Carter, E. D. Cashwell, “Particle transport simulation with the Monte Carlo method,” ERDA Critical Review Series, TID-26607 (U.S. Energy Research and Development Administration, Technical Information Center, Oak Ridge, Tenn., 1975).

Cooney, T. F.

Dao, N. Q.

Das, B. B.

B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Diamond, K.

Ediger, M. N.

Ettori, D.

Feld, M. S.

Fevrier, H.

Fishbein, M. C.

L. Marcu, M. C. Fishbein, J. M. I. Maarek, W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol. 21, 1244–1250 (2001).
[CrossRef] [PubMed]

J. M. I. Maarek, L. Marcu, M. C. Fishbein, W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med. 27, 241–254 (2000).
[CrossRef] [PubMed]

Fitzmaurice, M.

Gelebart, B.

Gemert, M. J. C.

A. J. Welch, M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

Georgakoudi, I.

Greek, L. S.

Grossweiner, L. I.

L. R. Jones, L. I. Grossweiner, “Singlet oxygen generation by photofrin(R) in homogeneous and light-scattering media,” J. Photochem. Photobiol. B 26, 249–256 (1994).
[CrossRef] [PubMed]

L. I. Grossweiner, J. L. Karagiannes, L. R. Jones, P. W. Johnson, “Reflection and transmission coefficients in plane-parallel layers with refractive-index mismatch,” Appl. Opt. 31, 106–109 (1992).
[CrossRef] [PubMed]

Grundfest, W. S.

L. Marcu, M. C. Fishbein, J. M. I. Maarek, W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol. 21, 1244–1250 (2001).
[CrossRef] [PubMed]

J. M. I. Maarek, L. Marcu, M. C. Fishbein, W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med. 27, 241–254 (2000).
[CrossRef] [PubMed]

L. Marcu, W. S. Grundfest, J. M. I. Maarek, “Photobleaching of arterial fluorescent compounds: characterization of elastin, collagen and cholesterol time-resolved spectra during prolonged ultraviolet irradiation,” Photochem. Photobiol. 69, 713–721 (1999).
[CrossRef] [PubMed]

Haynes, C. A.

Jack, D. A.

Jacques, S. L.

P. R. Bargo, S. A. Prahl, S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003).
[CrossRef] [PubMed]

S. P. Lin, L. H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997).
[CrossRef] [PubMed]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues—principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

S. L. Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).
[CrossRef] [PubMed]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef] [PubMed]

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. Muller, ed., Volume 1035 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

Johnson, P. W.

Johnson, T. M.

Jones, L. R.

L. R. Jones, L. I. Grossweiner, “Singlet oxygen generation by photofrin(R) in homogeneous and light-scattering media,” J. Photochem. Photobiol. B 26, 249–256 (1994).
[CrossRef] [PubMed]

L. I. Grossweiner, J. L. Karagiannes, L. R. Jones, P. W. Johnson, “Reflection and transmission coefficients in plane-parallel layers with refractive-index mismatch,” Appl. Opt. 31, 106–109 (1992).
[CrossRef] [PubMed]

Jouan, M.

Karagiannes, J. L.

Keijzer, M.

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. Muller, ed., Volume 1035 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

Lin, S. P.

Liu, F.

B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Liu, Q.

C. F. Zhu, Q. Liu, N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003).
[CrossRef] [PubMed]

Q. Liu, C. F. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

Maarek, J. M. I.

L. Marcu, M. C. Fishbein, J. M. I. Maarek, W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol. 21, 1244–1250 (2001).
[CrossRef] [PubMed]

J. M. I. Maarek, L. Marcu, M. C. Fishbein, W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med. 27, 241–254 (2000).
[CrossRef] [PubMed]

L. Marcu, W. S. Grundfest, J. M. I. Maarek, “Photobleaching of arterial fluorescent compounds: characterization of elastin, collagen and cholesterol time-resolved spectra during prolonged ultraviolet irradiation,” Photochem. Photobiol. 69, 713–721 (1999).
[CrossRef] [PubMed]

Mahadevan, A.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richardskortum, “In-vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10,193–10,197 (1994).
[CrossRef]

Mahadevan-Jansen, A.

A. Mahadevan-Jansen, W. F. Mitchell, N. Ramanujam, U. Utzinger, R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427–431 (1998).
[CrossRef] [PubMed]

Manoharan, R.

Marcu, L.

L. Marcu, M. C. Fishbein, J. M. I. Maarek, W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol. 21, 1244–1250 (2001).
[CrossRef] [PubMed]

J. M. I. Maarek, L. Marcu, M. C. Fishbein, W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med. 27, 241–254 (2000).
[CrossRef] [PubMed]

L. Marcu, W. S. Grundfest, J. M. I. Maarek, “Photobleaching of arterial fluorescent compounds: characterization of elastin, collagen and cholesterol time-resolved spectra during prolonged ultraviolet irradiation,” Photochem. Photobiol. 69, 713–721 (1999).
[CrossRef] [PubMed]

Marple, E.

Matchette, L. S.

Miller, H. D.

Mitchell, M. F.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richardskortum, “In-vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10,193–10,197 (1994).
[CrossRef]

Mitchell, W. F.

A. Mahadevan-Jansen, W. F. Mitchell, N. Ramanujam, U. Utzinger, R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427–431 (1998).
[CrossRef] [PubMed]

Moffitt, T. P.

T. P. Moffitt, S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001).
[CrossRef]

Mourant, J. R.

Muller, M. G.

Mycek, M. A.

K. Vishwanath, B. Pogue, M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002).
[CrossRef] [PubMed]

J. D. Pitts, M. A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution,” Rev. Sci. Instrum. 72, 3061–3072 (2001).
[CrossRef]

Nishioka, N. S.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

Padgett, N.

Patterson, M. S.

Perelman, L. T.

Pfefer, T. J.

Pitts, J. D.

J. D. Pitts, M. A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution,” Rev. Sci. Instrum. 72, 3061–3072 (2001).
[CrossRef]

Plaza, P.

Pogue, B.

K. Vishwanath, B. Pogue, M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002).
[CrossRef] [PubMed]

Pogue, B. W.

Prahl, S. A.

P. R. Bargo, S. A. Prahl, S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003).
[CrossRef] [PubMed]

T. P. Moffitt, S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001).
[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. Muller, ed., Volume 1035 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

Quan, L.

Ramanujam, N.

Q. Liu, C. F. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

C. F. Zhu, Q. Liu, N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003).
[CrossRef] [PubMed]

L. Quan, N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett. 27, 104–106 (2002).
[CrossRef]

A. Mahadevan-Jansen, W. F. Mitchell, N. Ramanujam, U. Utzinger, R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427–431 (1998).
[CrossRef] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richardskortum, “In-vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10,193–10,197 (1994).
[CrossRef]

Richardskortum, R.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richardskortum, “In-vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10,193–10,197 (1994).
[CrossRef]

Richards-Kortum, R.

A. Mahadevan-Jansen, W. F. Mitchell, N. Ramanujam, U. Utzinger, R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427–431 (1998).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

Ross, A. M.

Saisse, H.

Schomacker, K. T.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

Schulze, H. G.

Shim, M. G.

Silva, E.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richardskortum, “In-vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10,193–10,197 (1994).
[CrossRef]

Silver, S.

Skinner, H. T.

Thomsen, S.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richardskortum, “In-vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10,193–10,197 (1994).
[CrossRef]

Tinet, E.

Tittel, F. K.

Tualle, J. M.

Turner, R. F. B.

Utzinger, U.

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, W. F. Mitchell, N. Ramanujam, U. Utzinger, R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427–431 (1998).
[CrossRef] [PubMed]

Van Dam, J.

Vishwanath, K.

K. Vishwanath, B. Pogue, M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002).
[CrossRef] [PubMed]

Wach, M.

Wang, L. H.

Warren, S.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richardskortum, “In-vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10,193–10,197 (1994).
[CrossRef]

Weersink, R.

Welch, A. J.

A. J. Welch, M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. Muller, ed., Volume 1035 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

Wilson, B. C.

M. G. Shim, B. C. Wilson, E. Marple, M. Wach, “Study of fiber-optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53, 619–627 (1999).
[CrossRef]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues—principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

Wu, J.

Yappert, M. C.

Zhang, Q. G.

Zhu, C. F.

C. F. Zhu, Q. Liu, N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003).
[CrossRef] [PubMed]

Q. Liu, C. F. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

Zhu, Z. Y.

Zonios, G.

Appl. Opt. (14)

P. Plaza, N. Q. Dao, M. Jouan, H. Fevrier, H. Saisse, “Simulation and optimization of adjacent optical fiber sensors,” Appl. Opt. 25, 3448–3454 (1986).
[CrossRef]

S. L. Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).
[CrossRef] [PubMed]

L. I. Grossweiner, J. L. Karagiannes, L. R. Jones, P. W. Johnson, “Reflection and transmission coefficients in plane-parallel layers with refractive-index mismatch,” Appl. Opt. 31, 106–109 (1992).
[CrossRef] [PubMed]

S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, B. Gelebart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).
[CrossRef]

B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
[CrossRef]

L. S. Greek, H. G. Schulze, C. A. Haynes, M. W. Blades, R. F. B. Turner, “Rational design of fiber-optic probes for visible and pulsed-ultraviolet resonance Raman spectroscopy,” Appl. Opt. 35, 4086–4095 (1996).
[CrossRef] [PubMed]

S. P. Lin, L. H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997).
[CrossRef] [PubMed]

G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).
[CrossRef]

M. Canpolat, J. R. Mourant, “Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source-detector separation,” Appl. Opt. 39, 6508–6514 (2000).
[CrossRef]

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
[CrossRef] [PubMed]

M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu, M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001).
[CrossRef]

R. Weersink, M. S. Patterson, K. Diamond, S. Silver, N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique,” Appl. Opt. 40, 6389–6395 (2001).
[CrossRef]

P. R. Bargo, S. A. Prahl, S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
[CrossRef] [PubMed]

Appl. Spectrosc. (5)

Arterioscler. Thromb. Vasc. Biol. (1)

L. Marcu, M. C. Fishbein, J. M. I. Maarek, W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol. 21, 1244–1250 (2001).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues—principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. P. Moffitt, S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

C. F. Zhu, Q. Liu, N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003).
[CrossRef] [PubMed]

Q. Liu, C. F. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B (1)

L. R. Jones, L. I. Grossweiner, “Singlet oxygen generation by photofrin(R) in homogeneous and light-scattering media,” J. Photochem. Photobiol. B 26, 249–256 (1994).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

J. M. I. Maarek, L. Marcu, M. C. Fishbein, W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med. 27, 241–254 (2000).
[CrossRef] [PubMed]

Opt. Lett. (2)

Photochem. Photobiol. (2)

L. Marcu, W. S. Grundfest, J. M. I. Maarek, “Photobleaching of arterial fluorescent compounds: characterization of elastin, collagen and cholesterol time-resolved spectra during prolonged ultraviolet irradiation,” Photochem. Photobiol. 69, 713–721 (1999).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, W. F. Mitchell, N. Ramanujam, U. Utzinger, R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427–431 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

K. Vishwanath, B. Pogue, M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richardskortum, “In-vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10,193–10,197 (1994).
[CrossRef]

Rep. Prog. Phys. (1)

B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

J. D. Pitts, M. A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution,” Rev. Sci. Instrum. 72, 3061–3072 (2001).
[CrossRef]

Other (3)

A. J. Welch, M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

L. L. Carter, E. D. Cashwell, “Particle transport simulation with the Monte Carlo method,” ERDA Critical Review Series, TID-26607 (U.S. Energy Research and Development Administration, Technical Information Center, Oak Ridge, Tenn., 1975).

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. Muller, ed., Volume 1035 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Side and (b) cross-sectional views of the evaluated fiber-optic probes. Probe 1 was a dichroic beam-splitter-based single-fiber arrangement with common illumination and collection channels. Probes 2 and 3 were bifurcated, with a central illumination channel and a peripheral collection ring. The illumination channel of probe 2 consisted of a tapered fiber. The diameters of the illumination cores and the source-to-detector distances (center to center) are marked c and s, respectively. Diffuse reflectance at 337 nm was collected as a function of PTD d. Open (filled) arrows or circles indicate illumination (collection) paths. Probe views are drawn to scale.

Fig. 2
Fig. 2

Normalized collected reflected signal versus PTD for the white Lambertian target. Experimental data and Monte Carlo simulations (open circles) are shown for (a) the 600-μm core-diameter single fiber and (b) the tapered and (c) the nontapered bifurcated probes. Additional simulations for 200-μm diameter (open diamonds) and 1000-μm diameter (open triangles) single fibers are shown in (a). Experimental error bars represent ±1 SD. Simulation error bars are not shown because they would not be discernable.

Fig. 3
Fig. 3

Monte Carlo simulations showing the fluence distribution of the collected diffuse signal (Lambertian target) for (a) the single fiber and probes (b) P2 and (c) P3. Each data set was binned into 0.05-mm radial bins, normalized by the area of each ring, and finally adjusted to unit area under the curve. The extent of the area seen by the collection fibers is shown for PTDs of 2, 4, and 6 mm.

Fig. 4
Fig. 4

Normalized collected reflected signal versus PTD for (a) the 600-μm single fiber and (b) the tapered and (c) the nontapered bifurcated probes (agar phantom, μ a = 0.52 cm-1, μ s = 17.2 cm-1, g = 0.74). Experimental results and Monte Carlo simulations (open diamonds) represent total reflected signal (specular and diffuse). From the same simulations, but separately normalized, open circles represent collected diffuse reflected signals. Experimental error bars represent ±1 SD. Simulation error bars are not shown because they would not be discernable.

Fig. 5
Fig. 5

Results of Monte Carlo simulations for single-fiber probe P1 and the agar phantom, showing the internal fluence distributions of all photons entering the medium (bottom, illumination volume) and all diffuse photons collected by the fiber (middle, sampling volume). Surface distributions for the sampling volume are shown at the top. Results are for PTDs of (a) 0.1, (b) 1, and (c) 5 mm. Contours represent isofluence lines in joules per square centimeter. All data shown are normalized to the maximum value, with the contours representing 20–80% of this value in increments of 20%.

Fig. 6
Fig. 6

Results of Monte Carlo simulations for bifurcated probe P2 and the agar phantom, showing the internal fluence distributions of all photons entering the medium (bottom, illumination volume) and all diffuse photons collected by the fiber (middle, sampling volume). Surface distributions for the sampling volume are shown at the top. Results are for PTDs of (a) 0.1, (b) 2.5, (c) 4, and (d) 7 mm. Contours represent isofluence lines in joules per square centimeter. All data shown are normalized to the maximum value, with the contours representing 20–80% of this value in increments of 20%.

Fig. 7
Fig. 7

Simulations for bifurcated probe P3 and the agar phantom, showing the internal fluence distributions of all photons entering the medium (bottom, illumination volume) and all diffuse photons collected by the fiber (middle, sampling volume). Surface distributions for the sampling volume are shown at the top. Results are for PTDs of (a) 0.1, (b) 2.5, (c) 4, and (d) 7 mm. Contours represent isofluence lines in joules per square centimeter. Data are normalized to the maximum value, with the contours representing 20–80% of this value in increments of 20%.

Tables (1)

Tables Icon

Table 1 Collection Efficiency (%) from the Monte Carlo Simulation Calculated for Each Collection Fiber at the Maximum of Each R(PTD) Curve

Metrics