Abstract

The effect of various parameters on the accuracy of the laser-induced breakdown spectroscopy (LIBS) data taken from pellet samples has been investigated. The dependence of the standard deviation of the LIBS data on the amount and nature of the binder used, pressure used to press the powder into a pellet, and the position of the focal spot on the pellet has been investigated. Pellets made from industrially important materials such as silica, alumina, and lime with polyvinyl alcohol, sucrose, and starch as binders have been studied. The results thus obtained are tested by preparation of the calibration curves for Si, Fe, and B in the pellets made from the powder glass batch used as a surrogate for the batch employed for the vitrification of radioactive waste.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-I. Lee, J. Sneddon, K. Song, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000).
  2. E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy—a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
    [CrossRef]
  3. D. A. Cremers, L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, eds. (Marcel Dekker, New York, 1987), Chap. 5.
  4. F.-Y. Yuch, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy-elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000).
  5. I. Schechter, “Laser induced plasma spectroscopy: a review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997).
    [CrossRef]
  6. K. Song, Y.-I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 23, 183–235 (1997)
    [CrossRef]
  7. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
    [CrossRef]
  8. D. Body, B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
    [CrossRef]
  9. L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphite vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
    [CrossRef]
  10. S. Palanco, M. Klassen, J. Skupin, K. Hansen, E. Schubert, G. Sepold, J. J. Laserna, “Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys,” Spectrochim. Acta Part B 56, 651–659 (2001).
    [CrossRef]
  11. A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
    [CrossRef]
  12. R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
    [CrossRef]
  13. M. Martin, S. Wullschleger, C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” in Advanced Environmental Sensing Technology II, T. Vo-Dinh, S. Buttgenbach, eds., Proc. SPIE4576, 188–195 (2002).
    [CrossRef]
  14. S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707–714 (2001).
    [CrossRef]
  15. R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001).
    [CrossRef]
  16. M. A. Khater, J. T. Costello, E. T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits,” Appl. Spectrosc. 56, 970–983 (2002).
    [CrossRef]
  17. F. Roubani-Kalantzopoulou, I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
    [CrossRef]
  18. B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
    [CrossRef]
  19. B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, Y. von Kaene, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
    [CrossRef]
  20. A. K. Rai, H. Zhang, F.-Y. Yuch, J. P. Singh, A. Weisburg, “Parametric study of a fiber-optic laser breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
    [CrossRef]

2002 (2)

E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy—a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
[CrossRef]

M. A. Khater, J. T. Costello, E. T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits,” Appl. Spectrosc. 56, 970–983 (2002).
[CrossRef]

2001 (10)

F. Roubani-Kalantzopoulou, I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

B. T. Fisher, H. A. Johnsen, S. G. Buckley, D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, Y. von Kaene, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

A. K. Rai, H. Zhang, F.-Y. Yuch, J. P. Singh, A. Weisburg, “Parametric study of a fiber-optic laser breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707–714 (2001).
[CrossRef]

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001).
[CrossRef]

D. Body, B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
[CrossRef]

L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphite vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
[CrossRef]

S. Palanco, M. Klassen, J. Skupin, K. Hansen, E. Schubert, G. Sepold, J. J. Laserna, “Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys,” Spectrochim. Acta Part B 56, 651–659 (2001).
[CrossRef]

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

1997 (3)

I. Schechter, “Laser induced plasma spectroscopy: a review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997).
[CrossRef]

K. Song, Y.-I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 23, 183–235 (1997)
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

1994 (1)

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Asimellis, G.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707–714 (2001).
[CrossRef]

Barrette, L.

L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphite vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
[CrossRef]

Barthélemy, O.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, Y. von Kaene, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Bassiotis, I.

F. Roubani-Kalantzopoulou, I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

Body, D.

D. Body, B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
[CrossRef]

Botheroyd, I. M.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Bromley, B.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707–714 (2001).
[CrossRef]

Buckley, S. G.

Bulatov, V.

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001).
[CrossRef]

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Chadwick, B. L.

D. Body, B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
[CrossRef]

Chaker, M.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, Y. von Kaene, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Corsi, M.

E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy—a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
[CrossRef]

Costello, J. T.

Cremers, D. A.

D. A. Cremers, L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, eds. (Marcel Dekker, New York, 1987), Chap. 5.

Cristoforetti, G.

E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy—a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
[CrossRef]

Diamantopoulou, A.

F. Roubani-Kalantzopoulou, I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

Drogoff, B. Le

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, Y. von Kaene, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Evans, C. P.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Fisher, B. T.

Garten, C.

M. Martin, S. Wullschleger, C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” in Advanced Environmental Sensing Technology II, T. Vo-Dinh, S. Buttgenbach, eds., Proc. SPIE4576, 188–195 (2002).
[CrossRef]

Giannoudakos, A.

F. Roubani-Kalantzopoulou, I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

Hahn, D. W.

Hansen, K.

S. Palanco, M. Klassen, J. Skupin, K. Hansen, E. Schubert, G. Sepold, J. J. Laserna, “Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys,” Spectrochim. Acta Part B 56, 651–659 (2001).
[CrossRef]

Hazlett, R.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707–714 (2001).
[CrossRef]

Johnsen, H. A.

Johnston, T. W.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, Y. von Kaene, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Kennedy, E. T.

Khater, M. A.

Klassen, M.

S. Palanco, M. Klassen, J. Skupin, K. Hansen, E. Schubert, G. Sepold, J. J. Laserna, “Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys,” Spectrochim. Acta Part B 56, 651–659 (2001).
[CrossRef]

Kompa, K. L.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Kompitsas, M.

F. Roubani-Kalantzopoulou, I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

Krasniker, R.

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001).
[CrossRef]

Laserna, J. J.

S. Palanco, M. Klassen, J. Skupin, K. Hansen, E. Schubert, G. Sepold, J. J. Laserna, “Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys,” Spectrochim. Acta Part B 56, 651–659 (2001).
[CrossRef]

Laville, S.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, Y. von Kaene, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Lawson, S.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Lee, Y.-I.

K. Song, Y.-I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 23, 183–235 (1997)
[CrossRef]

Y.-I. Lee, J. Sneddon, K. Song, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000).

Margot, J.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, Y. von Kaene, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Martin, J.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707–714 (2001).
[CrossRef]

Martin, M.

M. Martin, S. Wullschleger, C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” in Advanced Environmental Sensing Technology II, T. Vo-Dinh, S. Buttgenbach, eds., Proc. SPIE4576, 188–195 (2002).
[CrossRef]

Niessner, R.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Palanco, S.

S. Palanco, M. Klassen, J. Skupin, K. Hansen, E. Schubert, G. Sepold, J. J. Laserna, “Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys,” Spectrochim. Acta Part B 56, 651–659 (2001).
[CrossRef]

Palleschi, V.

E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy—a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
[CrossRef]

Pearce, T.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707–714 (2001).
[CrossRef]

Radziemski, L. J.

D. A. Cremers, L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, eds. (Marcel Dekker, New York, 1987), Chap. 5.

Rai, A. K.

A. K. Rai, H. Zhang, F.-Y. Yuch, J. P. Singh, A. Weisburg, “Parametric study of a fiber-optic laser breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

Rosenwasser, S.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707–714 (2001).
[CrossRef]

Roubani-Kalantzopoulou, F.

F. Roubani-Kalantzopoulou, I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sabsabi, M.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, Y. von Kaene, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Schechter, I.

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001).
[CrossRef]

I. Schechter, “Laser induced plasma spectroscopy: a review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997).
[CrossRef]

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Schroder, H.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Schubert, E.

S. Palanco, M. Klassen, J. Skupin, K. Hansen, E. Schubert, G. Sepold, J. J. Laserna, “Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys,” Spectrochim. Acta Part B 56, 651–659 (2001).
[CrossRef]

Sepold, G.

S. Palanco, M. Klassen, J. Skupin, K. Hansen, E. Schubert, G. Sepold, J. J. Laserna, “Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys,” Spectrochim. Acta Part B 56, 651–659 (2001).
[CrossRef]

Singh, J. P.

A. K. Rai, H. Zhang, F.-Y. Yuch, J. P. Singh, A. Weisburg, “Parametric study of a fiber-optic laser breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

F.-Y. Yuch, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy-elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000).

Skupin, J.

S. Palanco, M. Klassen, J. Skupin, K. Hansen, E. Schubert, G. Sepold, J. J. Laserna, “Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys,” Spectrochim. Acta Part B 56, 651–659 (2001).
[CrossRef]

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sneddon, J.

K. Song, Y.-I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 23, 183–235 (1997)
[CrossRef]

Y.-I. Lee, J. Sneddon, K. Song, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000).

Song, K.

K. Song, Y.-I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 23, 183–235 (1997)
[CrossRef]

Y.-I. Lee, J. Sneddon, K. Song, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000).

Tognoni, E.

E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy—a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
[CrossRef]

Turmel, S.

L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphite vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
[CrossRef]

Vidal, F.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, Y. von Kaene, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

von Kaene, Y.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, Y. von Kaene, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Weisburg, A.

A. K. Rai, H. Zhang, F.-Y. Yuch, J. P. Singh, A. Weisburg, “Parametric study of a fiber-optic laser breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

Whitehouse, A. I.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Wisbrun, R.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Wright, J.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Wullschleger, S.

M. Martin, S. Wullschleger, C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” in Advanced Environmental Sensing Technology II, T. Vo-Dinh, S. Buttgenbach, eds., Proc. SPIE4576, 188–195 (2002).
[CrossRef]

Young, J.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

Yuch, F.-Y.

A. K. Rai, H. Zhang, F.-Y. Yuch, J. P. Singh, A. Weisburg, “Parametric study of a fiber-optic laser breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

F.-Y. Yuch, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy-elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000).

Zhang, H.

A. K. Rai, H. Zhang, F.-Y. Yuch, J. P. Singh, A. Weisburg, “Parametric study of a fiber-optic laser breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

F.-Y. Yuch, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy-elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000).

Zigler, A.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707–714 (2001).
[CrossRef]

Anal. Chem. (1)

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Appl. Spectrosc. (2)

Appl. Spectrosc. Rev. (1)

K. Song, Y.-I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 23, 183–235 (1997)
[CrossRef]

Crit. Rev. Anal. Chem. (1)

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Rev. Anal. Chem. (1)

I. Schechter, “Laser induced plasma spectroscopy: a review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

D. Body, B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
[CrossRef]

Spectrochim. Acta Part B (9)

L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphite vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001).
[CrossRef]

S. Palanco, M. Klassen, J. Skupin, K. Hansen, E. Schubert, G. Sepold, J. J. Laserna, “Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys,” Spectrochim. Acta Part B 56, 651–659 (2001).
[CrossRef]

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy—a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, Y. von Kaene, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

A. K. Rai, H. Zhang, F.-Y. Yuch, J. P. Singh, A. Weisburg, “Parametric study of a fiber-optic laser breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

F. Roubani-Kalantzopoulou, I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, A. Zigler, “Development of a method for automated quantitative analysis of ores using LIBS,” Spectrochim. Acta Part B 56, 707–714 (2001).
[CrossRef]

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001).
[CrossRef]

Other (4)

M. Martin, S. Wullschleger, C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” in Advanced Environmental Sensing Technology II, T. Vo-Dinh, S. Buttgenbach, eds., Proc. SPIE4576, 188–195 (2002).
[CrossRef]

D. A. Cremers, L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, eds. (Marcel Dekker, New York, 1987), Chap. 5.

F.-Y. Yuch, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy-elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000).

Y.-I. Lee, J. Sneddon, K. Song, Laser-Induced Breakdown Spectroscopy (Nova Science, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the apparatus for recording the LIBS spectra. L, lens; FL, focusing lens; IDAD, intensified diode-array detector; PC, personal computer.

Fig. 2
Fig. 2

Typical LIBS spectra of a mixture of silica (59.7%), lime (25.1%), and alumina (0.8%) around the 390-nm region.

Fig. 3
Fig. 3

Variation of the intensity of the Ca 395.7-nm emission line with the change in the position of the focal spot. The “0” position represents a focal spot on the surface, +value corresponds to a focal spot above the surface, and -value corresponds to a focal spot inside the surface of the sample. The average RSD of the data is ≈5.0.

Fig. 4
Fig. 4

RSD of the intensity of the Ca 395.7-nm emission line as a function of position of the focal spot. The “0” position represents a focal spot on the surface, +value corresponds to a focal spot above the surface, and -value corresponds to a focal spot inside the surface of the sample.

Fig. 5
Fig. 5

Intensity of the Ca 395.7-nm emission line as a function of the amount of PVA added as a binder to 5 g of lime. Pressure of 24 MPa has been used to make the pellets. The average RSD of the data is approximately 5%.

Fig. 6
Fig. 6

RSD of the intensity of the Ca 395.7-nm spectral line as a function of the amount of PVA (2 wt. % in distilled water) added to 5 g of lime to make pellets.

Fig. 7
Fig. 7

Variation of the RSD of the intensity of a Ca 395.7-nm emission line with the amount of pressure used to make pellets. 1 sq. in. = 6.4516 sq. cm.

Tables (2)

Tables Icon

Table 1 Concentrations (Weight Percent) of Si, Fe, and B in the Glass Batch

Tables Icon

Table 2 Results of the Calibration of Si, Fe, and B in the Glass Batch

Metrics