Abstract

As much as tenfold atomic emission enhancements have been observed in experiments combining nanosecond (ns) and femtosecond (fs) laser pulses in an orthogonal dual-pulse configuration for laser-induced breakdown spectroscopy (ns–fs orthogonal dual-pulse LIBS). In the examination of one of several potential sources of these atomic emission enhancements (sample heating by a ns air spark), minor reductions in atomic emission and as much as 15-fold improvements in mass removal have been observed for fs single-pulse LIBS of heated brass and aluminum samples. These results suggest that, although material removal with a high-powered, ultrashort fs pulse is temperature dependent, sample heating by the ns air spark is not the source of the atomic emission enhancements observed in ns–fs orthogonal dual-pulse LIBS.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Brech, L. Cross, “Optical microemission stimulated by a ruby masser,” Appl. Spectrosc. 16, 59 (1962).
  2. L. J. Radziemski, D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  3. Y. I. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectrometry (Nova Science, Huntington, New York, 2000).
  4. M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
    [CrossRef]
  5. H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
    [CrossRef]
  6. M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
    [CrossRef]
  7. D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
    [CrossRef]
  8. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
    [CrossRef]
  9. P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta, 429, 269–278 (2001).
    [CrossRef]
  10. W. Pearman, J. Scaffidi, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy in bulk aqueous solution with an orthogonal beam geometry,” Appl. Opt. 42, 6085–6093 (2003).
    [CrossRef] [PubMed]
  11. J. R. Wachter, D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042–1048 (1987).
    [CrossRef]
  12. M. Tran, B. W. Smith, D. W. Hahn, J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455–1461 (2001).
    [CrossRef]
  13. A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
    [CrossRef]
  14. M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
    [CrossRef]
  15. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
    [CrossRef]
  16. J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
    [CrossRef]
  17. B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
    [CrossRef]
  18. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochin. Acta Part B 56, 777–793 (2001).
    [CrossRef]
  19. C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
    [CrossRef]
  20. D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
    [CrossRef]
  21. S. A. Junk, “Ancient artefacts and modern analytical techniques—usefulness of laser ablation ICP-MS demonstrated with ancient gold coins,” Nucl. Instrum. Methods Phys. Res. B 181, 723–727 (2001).
    [CrossRef]
  22. C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).
  23. Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, J. Sneddon, “Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation,” Appl. Spectrosc. 51, 959–964 (1997).
    [CrossRef]
  24. Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals. Part III: the effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1597–1604 (1992).
    [CrossRef]
  25. H. Matsuta, K. Wagatsuma, “Emission characteristics of a low-pressure laser-induced plasma: selective excitation of ionic emission lines of copper,” Appl. Spectrosc. 56, 1165–1169 (2002).
    [CrossRef]
  26. K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
    [CrossRef]
  27. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
    [CrossRef] [PubMed]
  28. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
    [CrossRef]
  29. F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
    [CrossRef]
  30. K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “Development of a dual-pulse fiber optics LIBS probe for in-situ elemental analyses,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).
  31. D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber-optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
    [CrossRef]
  32. V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
    [CrossRef]
  33. L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
    [CrossRef]
  34. L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
    [CrossRef]
  35. J. Scaffidi, J. Peder, B. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003).
    [CrossRef] [PubMed]
  36. J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
    [CrossRef]
  37. D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
    [CrossRef]
  38. D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
    [CrossRef]
  39. R. E. Russo, X. Mao, S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
    [CrossRef] [PubMed]
  40. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).
    [CrossRef]
  41. P. K. Kennedy, D. X. Hammer, B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155–248 (1997).
    [CrossRef]
  42. A. Sullivan, J. Bonlie, D. F. Price, W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt. Lett. 21, 603–605 (1996).
    [CrossRef] [PubMed]

2003 (2)

2002 (5)

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

H. Matsuta, K. Wagatsuma, “Emission characteristics of a low-pressure laser-induced plasma: selective excitation of ionic emission lines of copper,” Appl. Spectrosc. 56, 1165–1169 (2002).
[CrossRef]

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

R. E. Russo, X. Mao, S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
[CrossRef] [PubMed]

2001 (12)

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

M. Tran, B. W. Smith, D. W. Hahn, J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455–1461 (2001).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochin. Acta Part B 56, 777–793 (2001).
[CrossRef]

M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

S. A. Junk, “Ancient artefacts and modern analytical techniques—usefulness of laser ablation ICP-MS demonstrated with ancient gold coins,” Nucl. Instrum. Methods Phys. Res. B 181, 723–727 (2001).
[CrossRef]

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta, 429, 269–278 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

2000 (5)

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
[CrossRef]

1998 (2)

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

1997 (3)

1996 (2)

A. Sullivan, J. Bonlie, D. F. Price, W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt. Lett. 21, 603–605 (1996).
[CrossRef] [PubMed]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

1995 (2)

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
[CrossRef]

1992 (1)

1991 (1)

1987 (1)

1984 (1)

1962 (1)

F. Brech, L. Cross, “Optical microemission stimulated by a ruby masser,” Appl. Spectrosc. 16, 59 (1962).

Angel, S. M.

W. Pearman, J. Scaffidi, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy in bulk aqueous solution with an orthogonal beam geometry,” Appl. Opt. 42, 6085–6093 (2003).
[CrossRef] [PubMed]

J. Scaffidi, J. Peder, B. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “Development of a dual-pulse fiber optics LIBS probe for in-situ elemental analyses,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).

D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber-optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
[CrossRef]

Anglos, D.

Bauer, H. E.

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

Bauerle, D.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Berg, M. A.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

Bette, H.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Bonlie, J.

Brech, F.

F. Brech, L. Cross, “Optical microemission stimulated by a ruby masser,” Appl. Spectrosc. 16, 59 (1962).

Brust, J.

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Carter, J. C.

J. Scaffidi, J. Peder, B. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “Development of a dual-pulse fiber optics LIBS probe for in-situ elemental analyses,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).

Cha, H. K.

Chichkov, B. N.

Cielo, P.

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
[CrossRef]

Colao, F.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

Colston, B. W.

Cook, R. L.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Corbett, R. E.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Cremers, D. A.

Cross, L.

F. Brech, L. Cross, “Optical microemission stimulated by a ruby masser,” Appl. Spectrosc. 16, 59 (1962).

Davies, C. M.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Deguchi, Y.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Detalle, V.

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

Eland, K. L.

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber-optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
[CrossRef]

K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “Development of a dual-pulse fiber optics LIBS probe for in-situ elemental analyses,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).

Fantoni, R.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

Feng, S.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Ferris, M. J.

Fichet, P.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta, 429, 269–278 (2001).
[CrossRef]

French, P. D.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochin. Acta Part B 56, 777–793 (2001).
[CrossRef]

Gold, D. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

Goode, S. R.

Gruber, J.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Hahn, D. W.

Hammer, D. X.

P. K. Kennedy, D. X. Hammer, B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155–248 (1997).
[CrossRef]

Harmon, R. S.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochin. Acta Part B 56, 777–793 (2001).
[CrossRef]

Heitz, J.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Iwasaki, S.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Jacobs, H.

Junk, S. A.

S. A. Junk, “Ancient artefacts and modern analytical techniques—usefulness of laser ablation ICP-MS demonstrated with ancient gold coins,” Nucl. Instrum. Methods Phys. Res. B 181, 723–727 (2001).
[CrossRef]

Kaiser, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Kennedy, P. K.

P. K. Kennedy, D. X. Hammer, B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155–248 (1997).
[CrossRef]

Kim, G. H.

Knight, A. K.

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Lai, T.

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

Lazic, V.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

Lee, G. H.

Lee, J. M.

Lee, Y. I.

Leis, F.

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
[CrossRef]

Liska, M.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Loree, T. R.

Mao, S. S.

R. E. Russo, X. Mao, S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
[CrossRef] [PubMed]

Mao, X.

R. E. Russo, X. Mao, S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
[CrossRef] [PubMed]

Marquardt, B. J.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Matsuta, H.

Mauchien, P.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta, 429, 269–278 (2001).
[CrossRef]

McNesby, K. L.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochin. Acta Part B 56, 777–793 (2001).
[CrossRef]

Miziolek, A. W.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochin. Acta Part B 56, 777–793 (2001).
[CrossRef]

Momma, C.

Monch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

Montgomery, D. J.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Monts, D. L.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Moulin, C.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta, 429, 269–278 (2001).
[CrossRef]

Niemax, K.

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
[CrossRef]

Noda, M.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Noll, R.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Nolte, S.

Park, M. C.

Pearman, B.

Pearman, W.

Peder, J.

Pershin, S.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

Peter, L.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Price, D. F.

Radziemski, L. J.

Ramaseder, N.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Rigsby, J. T.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Rockwell, B. A.

P. K. Kennedy, D. X. Hammer, B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155–248 (1997).
[CrossRef]

Russo, R. E.

R. E. Russo, X. Mao, S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
[CrossRef] [PubMed]

Sabsabi, M.

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
[CrossRef]

Samek, O.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Scaffidi, J.

Scherbarth, N. L.

Sdorra, W.

Singh, J. P.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Smith, B. W.

Sneddon, J.

Song, K.

St-Onge, L.

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Strasser, H.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

Stratis, D. N.

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “Development of a dual-pulse fiber optics LIBS probe for in-situ elemental analyses,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).

D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber-optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
[CrossRef]

Sturm, V.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Su, C. F.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Sullivan, A.

Sun, Q.

Telle, H. H.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

Teng, Y. Y.

Thiem, T. L.

Tran, M.

Tunnermann, A.

Uebbing, J.

Wachter, J. R.

Wagatsuma, K.

Wagner, J. F.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta, 429, 269–278 (2001).
[CrossRef]

Wainner, R. T.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochin. Acta Part B 56, 777–793 (2001).
[CrossRef]

Wellegehausen, B.

Welling, H.

White, W. E.

Winefordner, J. D.

Yoshikawa, N.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Young, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Yueh, F. Y.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Anal. Chem. (2)

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

R. E. Russo, X. Mao, S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta, 429, 269–278 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (17)

J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, J. Sneddon, “Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation,” Appl. Spectrosc. 51, 959–964 (1997).
[CrossRef]

Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals. Part III: the effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1597–1604 (1992).
[CrossRef]

H. Matsuta, K. Wagatsuma, “Emission characteristics of a low-pressure laser-induced plasma: selective excitation of ionic emission lines of copper,” Appl. Spectrosc. 56, 1165–1169 (2002).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

J. R. Wachter, D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042–1048 (1987).
[CrossRef]

M. Tran, B. W. Smith, D. W. Hahn, J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455–1461 (2001).
[CrossRef]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
[CrossRef]

M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
[CrossRef]

D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

F. Brech, L. Cross, “Optical microemission stimulated by a ruby masser,” Appl. Spectrosc. 16, 59 (1962).

M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Fresenius J. Anal. Chem. (1)

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

Glass Technol. (1)

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

J. Opt. Soc. Am. B (1)

Nucl. Instrum. Methods Phys. Res. B (1)

S. A. Junk, “Ancient artefacts and modern analytical techniques—usefulness of laser ablation ICP-MS demonstrated with ancient gold coins,” Nucl. Instrum. Methods Phys. Res. B 181, 723–727 (2001).
[CrossRef]

Opt. Eng. (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Opt. Lett. (1)

Prog. Quantum Electron. (1)

P. K. Kennedy, D. X. Hammer, B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155–248 (1997).
[CrossRef]

Spectrochim. Acta Part B (8)

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
[CrossRef]

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
[CrossRef]

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
[CrossRef]

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

Spectrochin. Acta Part B (1)

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochin. Acta Part B 56, 777–793 (2001).
[CrossRef]

Other (4)

L. J. Radziemski, D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

Y. I. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectrometry (Nova Science, Huntington, New York, 2000).

K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “Development of a dual-pulse fiber optics LIBS probe for in-situ elemental analyses,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).

D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber-optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Femtosecond single-pulse LIBS instrumental setup. The laser output was focused onto a heated aluminum or brass sample on a hot plate, and atomic emission from the resulting plasma was collected collinear to the ablative pulse prior to spectral resolution and quantitation. ICCD, intensified CCD.

Fig. 2
Fig. 2

Determination of penetration. Thin metal sheets (S) were mounted to a block (B) of dissimilar elemental composition such that ablation of the mounting block material could be used as an indicator of sample penetration by the fs pulse. Per-shot mass-removal rates were then calculated by use of the material thickness, crater volume, material density, and the number of shots required for sample penetration.

Fig. 3
Fig. 3

Effect of sample temperature on Cu atomic emission intensity. A typical atomic emission spectrum from 490 to 530 nm for Cu in brass is shown in the inset (above). All three strong Cu lines at 510- (triangles), 515- (X’s), and 521- (crosses) nm show decreased emission intensity as sample temperature increases. The data have been offset for clarity.

Fig. 4
Fig. 4

Effect of sample temperature on Al atomic emission intensity. A typical atomic emission spectrum from 390 to 430 nm for Al in bulk aluminum is shown in the inset (above). Both Al lines at 393- (X’s) and 396- (crosses) nm show decreased emission intensity as sample temperature increases. The data have been offset for clarity.

Fig. 5
Fig. 5

Effect of sample temperature on mass removal with a fs pulse. Mass removal for fs single-pulse ablation of brass shows a strong positive dependence on sample temperature, increasing eight-fold for a temperature increase from 30° C to 150° C. Crater-hole diameters and volumes were quite consistent regardless of sample temperature, so the observed increase in mass removal is almost purely a result of reduction in the number of shots needed to penetrate the 0.4-mm-thick brass sample (from 850 at 30° C to approximately 130 at 150° C).

Fig. 6
Fig. 6

Effect of sample temperature on mass removal with a fs pulse. Mass removal for fs single-pulse ablation of aluminum shows a strong positive dependence on sample temperature, increasing 15-fold for a temperature increase from 30° C to 150° C. Crater-hole diameters and volumes were quite consistent regardless of sample temperature, so the observed increase in mass removal is almost purely a result of reduction in the number of shots needed to penetrate the 0.2-mm-thick aluminum sample (from 350 at 30° C to approximately 25 at 150° C).

Fig. 7
Fig. 7

Atomic emission enhancement in ns–fs dual-pulse LIBS. Al atomic emission is greatly enhanced when a ns air spark is generated above the sample surface several microseconds prior to ablation with a fs pulse. Enhancements can be observed long after nitrogen and oxygen emission have ceased (roughly 20–30 μs after air spark formation in the experiment above). Error bars represent two standard deviations, n = 5.

Metrics