Abstract

We measure with a gated intensified CCD camera the cross-polarized backscattered light from a linearly polarized laser beam penetrating a cloud made of spherical particles. In accordance with previously published results we observe a clear azimuthal pattern in the recorded images. We show that the pattern is symmetrical, that it originates from second-order scattering, and that higher-order scattering causes blurring that increases with optical depth. We also find that the contrast in the symmetrical features can be related to measurement of the optical depth. Moreover, when the blurring contributions are identified and subtracted, the resulting pattern provides a pure second-order scattering measurement that can be used for retrieval of droplet size.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Schotland, K. Sassen, R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
    [CrossRef]
  2. K. Sassen, “Depolarization of laser light backscattered by artificial clouds,” J. Appl. Meteorol. 13, 923–933 (1974).
    [CrossRef]
  3. S. R. Pal, A. I. Carswell, “The polarization characteristics of lidar scattering from snow and ice crystals in the atmosphere,” J. Appl. Meteorol. 16, 70–80 (1977).
    [CrossRef]
  4. C. M. R. Platt, “Lidar observation of a mixed-phase altostratus cloud,” J. Appl. Meteorol. 16, 339–345 (1977).
    [CrossRef]
  5. A. I. Carswell, S. R. Pal, “Polarization anisotropy in lidar multiple scattering from clouds,” Appl. Opt. 19, 4123–4126 (1980).
    [CrossRef] [PubMed]
  6. S. R. Pal, A. I. Carswell, “Polarization anisotropy in lidar multiple scattering from atmospheric clouds,” Appl. Opt. 24, 3464–3471 (1985).
    [CrossRef] [PubMed]
  7. M. J. Rakovic, G. W. Kattawar, “Theoretical analysis of polarization patterns from incoherent backscattering of light,” Appl. Opt. 37, 3333–3338 (1998).
    [CrossRef]
  8. G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals,” Appl. Opt. 38, 5202–5211 (1999).
    [CrossRef]
  9. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41, 6307–6324 (2002).
    [CrossRef] [PubMed]
  10. G. Roy, L. Bissonnette, C. Bastille, “Efficient field-of-view control for multiple-field-of-view lidar receivers,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 767–770.
  11. Y. Saito, M. Ishizuka, S. Nagao, T. D. Kawahara, A. Nomura, K. Noguchi, “Imaging of multiple scattered laser beam passing through clouds: experiment and computer simulation,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 169–172.
  12. C. Buil, CCD Astronomy: Construction of an Astronomical CCD Camera (Willmann-Bell, Richmond, Va., 1991), pp. 252–259.
  13. M. J. Rakovic, G. W. Kattawar, M. Mehrübeoglu, B. D. Cameron, L. V. Wang, S. Rastegar, G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399–3408 (1999).
    [CrossRef]
  14. G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Estimation of cloud droplet size density distribution from multiple-field-of-view lidar returns,” Opt. Eng. 36, 3404–3415 (1997).
    [CrossRef]
  15. U. G. Oppel, M. Wengenmayer, “Diffusion of the lidar beam seen from the receiver,” in Lidar Multiple Scattering Experiments, C. Werner, U. G. Oppel, T. Rother, eds., Proc. SPIE5059, 21–30 (2003).
    [CrossRef]

2002 (1)

1999 (2)

1998 (1)

1997 (1)

G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Estimation of cloud droplet size density distribution from multiple-field-of-view lidar returns,” Opt. Eng. 36, 3404–3415 (1997).
[CrossRef]

1985 (1)

1980 (1)

1977 (2)

S. R. Pal, A. I. Carswell, “The polarization characteristics of lidar scattering from snow and ice crystals in the atmosphere,” J. Appl. Meteorol. 16, 70–80 (1977).
[CrossRef]

C. M. R. Platt, “Lidar observation of a mixed-phase altostratus cloud,” J. Appl. Meteorol. 16, 339–345 (1977).
[CrossRef]

1974 (1)

K. Sassen, “Depolarization of laser light backscattered by artificial clouds,” J. Appl. Meteorol. 13, 923–933 (1974).
[CrossRef]

1971 (1)

R. M. Schotland, K. Sassen, R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Bastille, C.

G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals,” Appl. Opt. 38, 5202–5211 (1999).
[CrossRef]

G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Estimation of cloud droplet size density distribution from multiple-field-of-view lidar returns,” Opt. Eng. 36, 3404–3415 (1997).
[CrossRef]

G. Roy, L. Bissonnette, C. Bastille, “Efficient field-of-view control for multiple-field-of-view lidar receivers,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 767–770.

Bissonnette, L.

G. Roy, L. Bissonnette, C. Bastille, “Efficient field-of-view control for multiple-field-of-view lidar receivers,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 767–770.

Bissonnette, L. R.

Buil, C.

C. Buil, CCD Astronomy: Construction of an Astronomical CCD Camera (Willmann-Bell, Richmond, Va., 1991), pp. 252–259.

Cameron, B. D.

Carswell, A. I.

Cober, S. G.

Coté, G. L.

Isaac, G. A.

Ishizuka, M.

Y. Saito, M. Ishizuka, S. Nagao, T. D. Kawahara, A. Nomura, K. Noguchi, “Imaging of multiple scattered laser beam passing through clouds: experiment and computer simulation,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 169–172.

Kattawar, G. W.

Kawahara, T. D.

Y. Saito, M. Ishizuka, S. Nagao, T. D. Kawahara, A. Nomura, K. Noguchi, “Imaging of multiple scattered laser beam passing through clouds: experiment and computer simulation,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 169–172.

Mehrübeoglu, M.

Nagao, S.

Y. Saito, M. Ishizuka, S. Nagao, T. D. Kawahara, A. Nomura, K. Noguchi, “Imaging of multiple scattered laser beam passing through clouds: experiment and computer simulation,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 169–172.

Noguchi, K.

Y. Saito, M. Ishizuka, S. Nagao, T. D. Kawahara, A. Nomura, K. Noguchi, “Imaging of multiple scattered laser beam passing through clouds: experiment and computer simulation,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 169–172.

Nomura, A.

Y. Saito, M. Ishizuka, S. Nagao, T. D. Kawahara, A. Nomura, K. Noguchi, “Imaging of multiple scattered laser beam passing through clouds: experiment and computer simulation,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 169–172.

Oppel, U. G.

U. G. Oppel, M. Wengenmayer, “Diffusion of the lidar beam seen from the receiver,” in Lidar Multiple Scattering Experiments, C. Werner, U. G. Oppel, T. Rother, eds., Proc. SPIE5059, 21–30 (2003).
[CrossRef]

Pal, S. R.

Platt, C. M. R.

C. M. R. Platt, “Lidar observation of a mixed-phase altostratus cloud,” J. Appl. Meteorol. 16, 339–345 (1977).
[CrossRef]

Poutier, L.

Rakovic, M. J.

Rastegar, S.

Roy, G.

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41, 6307–6324 (2002).
[CrossRef] [PubMed]

G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals,” Appl. Opt. 38, 5202–5211 (1999).
[CrossRef]

G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Estimation of cloud droplet size density distribution from multiple-field-of-view lidar returns,” Opt. Eng. 36, 3404–3415 (1997).
[CrossRef]

G. Roy, L. Bissonnette, C. Bastille, “Efficient field-of-view control for multiple-field-of-view lidar receivers,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 767–770.

Saito, Y.

Y. Saito, M. Ishizuka, S. Nagao, T. D. Kawahara, A. Nomura, K. Noguchi, “Imaging of multiple scattered laser beam passing through clouds: experiment and computer simulation,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 169–172.

Sassen, K.

K. Sassen, “Depolarization of laser light backscattered by artificial clouds,” J. Appl. Meteorol. 13, 923–933 (1974).
[CrossRef]

R. M. Schotland, K. Sassen, R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Schotland, R. M.

R. M. Schotland, K. Sassen, R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Stone, R. J.

R. M. Schotland, K. Sassen, R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Vallée, G.

G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals,” Appl. Opt. 38, 5202–5211 (1999).
[CrossRef]

G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Estimation of cloud droplet size density distribution from multiple-field-of-view lidar returns,” Opt. Eng. 36, 3404–3415 (1997).
[CrossRef]

Wang, L. V.

Wengenmayer, M.

U. G. Oppel, M. Wengenmayer, “Diffusion of the lidar beam seen from the receiver,” in Lidar Multiple Scattering Experiments, C. Werner, U. G. Oppel, T. Rother, eds., Proc. SPIE5059, 21–30 (2003).
[CrossRef]

Appl. Opt. (6)

J. Appl. Meteorol. (4)

R. M. Schotland, K. Sassen, R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

K. Sassen, “Depolarization of laser light backscattered by artificial clouds,” J. Appl. Meteorol. 13, 923–933 (1974).
[CrossRef]

S. R. Pal, A. I. Carswell, “The polarization characteristics of lidar scattering from snow and ice crystals in the atmosphere,” J. Appl. Meteorol. 16, 70–80 (1977).
[CrossRef]

C. M. R. Platt, “Lidar observation of a mixed-phase altostratus cloud,” J. Appl. Meteorol. 16, 339–345 (1977).
[CrossRef]

Opt. Eng. (1)

G. Roy, L. R. Bissonnette, C. Bastille, G. Vallée, “Estimation of cloud droplet size density distribution from multiple-field-of-view lidar returns,” Opt. Eng. 36, 3404–3415 (1997).
[CrossRef]

Other (4)

U. G. Oppel, M. Wengenmayer, “Diffusion of the lidar beam seen from the receiver,” in Lidar Multiple Scattering Experiments, C. Werner, U. G. Oppel, T. Rother, eds., Proc. SPIE5059, 21–30 (2003).
[CrossRef]

G. Roy, L. Bissonnette, C. Bastille, “Efficient field-of-view control for multiple-field-of-view lidar receivers,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 767–770.

Y. Saito, M. Ishizuka, S. Nagao, T. D. Kawahara, A. Nomura, K. Noguchi, “Imaging of multiple scattered laser beam passing through clouds: experiment and computer simulation,” in Proceedings of 19th International Laser Radar Conference, NASA/CP-1998-207671/PT1 (U.S. GPO, Washington, D.C., 1998), pp. 169–172.

C. Buil, CCD Astronomy: Construction of an Astronomical CCD Camera (Willmann-Bell, Richmond, Va., 1991), pp. 252–259.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the lidar detection module including two conventional polarization channels and one channel for the measurement of the cross-polarized returns with an ICCD camera: PMT, photomultiplier tube.

Fig. 2
Fig. 2

Normalized intensity of the laser-beam profile as a function of FOV/2.

Fig. 3
Fig. 3

Images of range-gated cross-polarized backscatter returns from, left, a fog-oil and, right, a water droplet cloud, both dispersed in a 22-m-long chamber. The gate depth is 3 m, the distance to the cloud is 100 m, and the cloud penetration distances are, left, 3.5, 6.5, and 9.5 m and, right, 6.5, 9.5, and 12.5 m.

Fig. 4
Fig. 4

Azimuthal dependence for various FOVs of the patterns shown in Fig. 3: symbols, measured pixel counts; continuous curves, best fits.

Fig. 5
Fig. 5

Contrast values C i ), Eq. (1), plotted versus optical depth for (a) FOVs of 2 and 4 mrad and (b) water and fog-oil droplets.

Fig. 6
Fig. 6

Relative cross-polarized return for narrow azimuth sectors centered on 0°, 22.5°, 45°, 67.5°, and 90° plotted as functions of the FOV.

Fig. 7
Fig. 7

Schematic representation of second- and third-order scattering contributions to lidar returns: S1, S2, single forward-scattering events; ϕ, azimuth angle; θ, scattering angle; β1, β2, backscattering angles.

Fig. 8
Fig. 8

Circles, total and, asterisks, derived second-order lidar returns (azimuthally integrated cross-polarized component) as functions of the FOV for the patterns displayed in Fig. 3.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

O.D.i=-i22ln T,
Cθi=-aibi.
Sθ, ϕiSθ=1 mrad, ϕi
Iρs, ϕ=βs2f0ρs+f4ρs41-cos 4ϕ,
Cθi=1.

Metrics