Abstract

A multiplexing method based on narrow diode-laser arrays (DLAs) in an axially symmetric configuration is described. The use of submillimeter narrow DLAs improves beam quality considerably in the slow-axis direction compared with typical 1-cm-wide DLAs. The axially symmetric geometry is advantageous for efficient spatial, wavelength, and polarization multiplexing. With narrow DLAs and an axially symmetric geometry, a small circular focus with more than 10-kW/mm2 average power density is possible. Theoretical calculations and preliminary experimental results are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Diehl, ed., High-Power Diode Lasers: Fundamentals, Technology, Applications (Springer-Verlag, Germany, 2000), pp. 313–315.
  2. S. Yamaguchi, T. Kobayashi, Y. Saito, K. Chiba, “Collimation of emissions from a high-power multistripe laser-diode bar with multiprism array coupling and focusing to a small spot,” Opt. Lett. 20, 898–900 (1995).
    [Crossref] [PubMed]
  3. W. A. Clarkson, D. C. Hanna, “Two-mirror beam-shaping technique for high-power diode bars,” Opt. Lett. 21, 375–377 (1996).
    [Crossref] [PubMed]
  4. P. Wang, “Beam-shaping optics deliver high-power beams,” Laser Focus World 37(12), 115–118 (2001).
  5. T. Izawa, “Laser beam shaping system,” U.S. patent5,805,748 (8September1998).
  6. C. Ullmann, V. Krause, A. Kosters, “Optical arrangement for use in a laser-diode system,” U.S. patent5,808,803 (15September1998).
  7. G. Hollemann, H. Voelckel, M. Chaleev, A. Mak, V. Ustyugov, A. Michailov, G. Novikov, O. Orlov, “Arrangement for combining and shaping the radiation of a plurality of laser diode lines,” U.S. patent5,877,898 (2March1999).
  8. V. Krause, C. Ullmann, “Laser optics and diode laser,” U.S. patent5,986,794 (16November1999).
  9. T. Alahautala, E. Lassila, “A method and a laser device for producing high optical power density,” International patent applicationWO 03/097858 (27November2003).
  10. M. Kelemen, M. Mikulla, “High-power high-brightness ridge-waveguide tapered diode lasers,” (28August2003), http://www.iaf.fhg.de/ipdetetd/frames_e.htm .
  11. JDS Uniphase, “Product Bulletin: SDL-6380 Series” (28August2003), http://www.jdsu.com .
  12. Frankfurt Laser, “Innovative products: high-brightness lasers,” Photon. Spectra 37, 138 (2003).

2003 (1)

Frankfurt Laser, “Innovative products: high-brightness lasers,” Photon. Spectra 37, 138 (2003).

2001 (1)

P. Wang, “Beam-shaping optics deliver high-power beams,” Laser Focus World 37(12), 115–118 (2001).

1996 (1)

1995 (1)

Alahautala, T.

T. Alahautala, E. Lassila, “A method and a laser device for producing high optical power density,” International patent applicationWO 03/097858 (27November2003).

Chaleev, M.

G. Hollemann, H. Voelckel, M. Chaleev, A. Mak, V. Ustyugov, A. Michailov, G. Novikov, O. Orlov, “Arrangement for combining and shaping the radiation of a plurality of laser diode lines,” U.S. patent5,877,898 (2March1999).

Chiba, K.

Clarkson, W. A.

Hanna, D. C.

Hollemann, G.

G. Hollemann, H. Voelckel, M. Chaleev, A. Mak, V. Ustyugov, A. Michailov, G. Novikov, O. Orlov, “Arrangement for combining and shaping the radiation of a plurality of laser diode lines,” U.S. patent5,877,898 (2March1999).

Izawa, T.

T. Izawa, “Laser beam shaping system,” U.S. patent5,805,748 (8September1998).

Kobayashi, T.

Kosters, A.

C. Ullmann, V. Krause, A. Kosters, “Optical arrangement for use in a laser-diode system,” U.S. patent5,808,803 (15September1998).

Krause, V.

V. Krause, C. Ullmann, “Laser optics and diode laser,” U.S. patent5,986,794 (16November1999).

C. Ullmann, V. Krause, A. Kosters, “Optical arrangement for use in a laser-diode system,” U.S. patent5,808,803 (15September1998).

Laser, Frankfurt

Frankfurt Laser, “Innovative products: high-brightness lasers,” Photon. Spectra 37, 138 (2003).

Lassila, E.

T. Alahautala, E. Lassila, “A method and a laser device for producing high optical power density,” International patent applicationWO 03/097858 (27November2003).

Mak, A.

G. Hollemann, H. Voelckel, M. Chaleev, A. Mak, V. Ustyugov, A. Michailov, G. Novikov, O. Orlov, “Arrangement for combining and shaping the radiation of a plurality of laser diode lines,” U.S. patent5,877,898 (2March1999).

Michailov, A.

G. Hollemann, H. Voelckel, M. Chaleev, A. Mak, V. Ustyugov, A. Michailov, G. Novikov, O. Orlov, “Arrangement for combining and shaping the radiation of a plurality of laser diode lines,” U.S. patent5,877,898 (2March1999).

Novikov, G.

G. Hollemann, H. Voelckel, M. Chaleev, A. Mak, V. Ustyugov, A. Michailov, G. Novikov, O. Orlov, “Arrangement for combining and shaping the radiation of a plurality of laser diode lines,” U.S. patent5,877,898 (2March1999).

Orlov, O.

G. Hollemann, H. Voelckel, M. Chaleev, A. Mak, V. Ustyugov, A. Michailov, G. Novikov, O. Orlov, “Arrangement for combining and shaping the radiation of a plurality of laser diode lines,” U.S. patent5,877,898 (2March1999).

Saito, Y.

Ullmann, C.

C. Ullmann, V. Krause, A. Kosters, “Optical arrangement for use in a laser-diode system,” U.S. patent5,808,803 (15September1998).

V. Krause, C. Ullmann, “Laser optics and diode laser,” U.S. patent5,986,794 (16November1999).

Ustyugov, V.

G. Hollemann, H. Voelckel, M. Chaleev, A. Mak, V. Ustyugov, A. Michailov, G. Novikov, O. Orlov, “Arrangement for combining and shaping the radiation of a plurality of laser diode lines,” U.S. patent5,877,898 (2March1999).

Voelckel, H.

G. Hollemann, H. Voelckel, M. Chaleev, A. Mak, V. Ustyugov, A. Michailov, G. Novikov, O. Orlov, “Arrangement for combining and shaping the radiation of a plurality of laser diode lines,” U.S. patent5,877,898 (2March1999).

Wang, P.

P. Wang, “Beam-shaping optics deliver high-power beams,” Laser Focus World 37(12), 115–118 (2001).

Yamaguchi, S.

Laser Focus World (1)

P. Wang, “Beam-shaping optics deliver high-power beams,” Laser Focus World 37(12), 115–118 (2001).

Opt. Lett. (2)

Photon. Spectra (1)

Frankfurt Laser, “Innovative products: high-brightness lasers,” Photon. Spectra 37, 138 (2003).

Other (8)

R. Diehl, ed., High-Power Diode Lasers: Fundamentals, Technology, Applications (Springer-Verlag, Germany, 2000), pp. 313–315.

T. Izawa, “Laser beam shaping system,” U.S. patent5,805,748 (8September1998).

C. Ullmann, V. Krause, A. Kosters, “Optical arrangement for use in a laser-diode system,” U.S. patent5,808,803 (15September1998).

G. Hollemann, H. Voelckel, M. Chaleev, A. Mak, V. Ustyugov, A. Michailov, G. Novikov, O. Orlov, “Arrangement for combining and shaping the radiation of a plurality of laser diode lines,” U.S. patent5,877,898 (2March1999).

V. Krause, C. Ullmann, “Laser optics and diode laser,” U.S. patent5,986,794 (16November1999).

T. Alahautala, E. Lassila, “A method and a laser device for producing high optical power density,” International patent applicationWO 03/097858 (27November2003).

M. Kelemen, M. Mikulla, “High-power high-brightness ridge-waveguide tapered diode lasers,” (28August2003), http://www.iaf.fhg.de/ipdetetd/frames_e.htm .

JDS Uniphase, “Product Bulletin: SDL-6380 Series” (28August2003), http://www.jdsu.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Traditional (a) wide DLA and (b) narrow DLA.

Fig. 2
Fig. 2

Laser stack made of narrow DLAs with FAC. The drawing symbols of the laser stack are also shown. The symbols are used in Figs. 3, 4, and 7. FAC lenses can be made considerably shorter if desired. The size of the cooling mount can be adjusted so that sufficient heat transfer from the DLA to coolant is provided.

Fig. 3
Fig. 3

(a) Cross-sectional view and (b) bottom view of an axially symmetric diode-laser device based on narrow DLA stacks.

Fig. 4
Fig. 4

Cross-sectional view of (a) an axially symmetric laser device design with two wavelengths and (b) an improved design with three wavelengths. The desirable orientation of FO depends on the lens; e.g., for spherical lenses the orientation in (a) may reduce spherical aberration compared with the orientation in (b).

Fig. 5
Fig. 5

Experimental setup.

Fig. 6
Fig. 6

(a) Measured images of foci presented in an inverted gray scale and corresponding intensity distributions in (b) the slow-axis and (c) the fast-axis direction.

Fig. 7
Fig. 7

Modeling of design B. For clarity only three sectors are drawn. Mirrors and compensating elements are assumed to be ideal, and they are marked by white boxes for simplicity.

Fig. 8
Fig. 8

Performance of design B (indicated by the ellipse) compared with kilowatt-level commercial diode-laser devices. The WD of all presented devices is approximately 100 mm; 3λ + p indicates the multiplexing of three wavelengths with polarization multiplexing. (The efficiency of WM was estimated to be 90% and the efficiency of PM, 80%). The values for the Laserline devices are FWHM values. Brightness B values are in kW/mm2/sr, and they are approximative for the commercial devices.

Tables (3)

Tables Icon

Table 1 Design A: Calculated Results

Tables Icon

Table 2 Experimental Slow-Axis Focus Diameters

Tables Icon

Table 3 Experimental Fast-Axis Focus Diameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B=PAΩPπ2Q2,
Q=QFQS1/2,

Metrics