Abstract

We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70 °C to 80 °C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31, 297–324 (1999).
    [CrossRef]
  2. G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156–161 (1997).
    [CrossRef]
  3. D. R. Hjelme, L. Bjerkan, S. Neegard, J. S. Rambech, J. V. Aarsnes, “Application of Bragg grating sensors in the characterization of scaled marine vehicle models,” Appl. Opt. 36, 328–336 (1997).
    [CrossRef] [PubMed]
  4. K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” J. Lightwave Technol. 15, 1424–1432 (1997).
    [CrossRef]
  5. G. Ghosh, “Temperature dispersion of refractive-indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
    [CrossRef]
  6. S. Gupta, T. Mizunami, T. Yamao, T. Shimomura, “Fiber Bragg grating cryogenic temperature sensors,” Appl. Opt. 35, 5202–5205 (1996).
    [CrossRef] [PubMed]
  7. M. B. Reid, M. Ozcan, “Temperature dependence of fiber optic Bragg gratings at low temperatures,” Opt. Eng. 37, 237–240 (1998).
    [CrossRef]
  8. S. W. James, R. P. Tatam, A. Twin, M. Morgan, P. Noonan, “Strain response of fibre Bragg grating sensors at cryogenic temperatures,” Meas. Sci. Technol. 13, 1535–1539 (2002).
    [CrossRef]
  9. A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, I. Riant, “Temperature-induced reversible changes in spectral characteristics of fiber Bragg gratings,” Appl. Opt. 40, 2632–2642 (2001).
    [CrossRef]
  10. G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 25–28 (2000).
  11. O. V. Butov, K. M. Golant, I. V. Nikolin, “Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523–525 (2002).
    [CrossRef]
  12. T. S. Priest, K. T. Jones, G. B. Scelsi, G. A. Woolsey, “Thermal coefficients of refractive index and expansion in optical fibre sensing,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), Paper OWC41.
  13. T. Toyoda, M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16, L97–L100 (1983).
    [CrossRef]
  14. F. M. Haran, J. K. Rew, P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163–1166 (1998).
    [CrossRef]
  15. G. Ghosh, “Temperature dispersion of refractive-indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
    [CrossRef]
  16. G. Ghosh, “Model for the thermo-optical coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
    [CrossRef]
  17. D. A. Flavin, R. McBride, J. D. C. Jones, “Short-scan interferometric interrogation and multiplexing of fibre Bragg grating sensors,” Opt. Commun. 170, 347–353 (1999).
    [CrossRef]
  18. K. B. Rochford, S. D. Dyer, “Demultiplexing of interferometrically interrogated fiber Bragg grating sensors using Hilbert transform processing,” J. Lightwave Technol. 17, 831–836 (1999).
    [CrossRef]
  19. R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, Calif., 1999).
  20. J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Am. Ceram. Soc. 74, 1689–1691 (1991).
    [CrossRef]
  21. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamahita, “Temperature-dependence of refractive-index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
    [CrossRef]
  22. G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
    [CrossRef]

2002 (2)

S. W. James, R. P. Tatam, A. Twin, M. Morgan, P. Noonan, “Strain response of fibre Bragg grating sensors at cryogenic temperatures,” Meas. Sci. Technol. 13, 1535–1539 (2002).
[CrossRef]

O. V. Butov, K. M. Golant, I. V. Nikolin, “Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523–525 (2002).
[CrossRef]

2001 (1)

1999 (3)

Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31, 297–324 (1999).
[CrossRef]

D. A. Flavin, R. McBride, J. D. C. Jones, “Short-scan interferometric interrogation and multiplexing of fibre Bragg grating sensors,” Opt. Commun. 170, 347–353 (1999).
[CrossRef]

K. B. Rochford, S. D. Dyer, “Demultiplexing of interferometrically interrogated fiber Bragg grating sensors using Hilbert transform processing,” J. Lightwave Technol. 17, 831–836 (1999).
[CrossRef]

1998 (2)

F. M. Haran, J. K. Rew, P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163–1166 (1998).
[CrossRef]

M. B. Reid, M. Ozcan, “Temperature dependence of fiber optic Bragg gratings at low temperatures,” Opt. Eng. 37, 237–240 (1998).
[CrossRef]

1997 (3)

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156–161 (1997).
[CrossRef]

D. R. Hjelme, L. Bjerkan, S. Neegard, J. S. Rambech, J. V. Aarsnes, “Application of Bragg grating sensors in the characterization of scaled marine vehicle models,” Appl. Opt. 36, 328–336 (1997).
[CrossRef] [PubMed]

K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” J. Lightwave Technol. 15, 1424–1432 (1997).
[CrossRef]

1996 (1)

1995 (1)

G. Ghosh, “Model for the thermo-optical coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[CrossRef]

1994 (3)

G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

G. Ghosh, “Temperature dispersion of refractive-indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
[CrossRef]

G. Ghosh, “Temperature dispersion of refractive-indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
[CrossRef]

1991 (2)

J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Am. Ceram. Soc. 74, 1689–1691 (1991).
[CrossRef]

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamahita, “Temperature-dependence of refractive-index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

1983 (1)

T. Toyoda, M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16, L97–L100 (1983).
[CrossRef]

Aarsnes, J. V.

Archambault, J. L.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156–161 (1997).
[CrossRef]

Bennion, I.

K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” J. Lightwave Technol. 15, 1424–1432 (1997).
[CrossRef]

G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 25–28 (2000).

Bjerkan, L.

Brady, G. P.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156–161 (1997).
[CrossRef]

Butov, O. V.

O. V. Butov, K. M. Golant, I. V. Nikolin, “Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523–525 (2002).
[CrossRef]

Chisholm, K. E.

K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” J. Lightwave Technol. 15, 1424–1432 (1997).
[CrossRef]

G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 25–28 (2000).

Douay, M.

Dyer, S. D.

Endo, M.

G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Everall, L. A.

K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” J. Lightwave Technol. 15, 1424–1432 (1997).
[CrossRef]

Fallon, R. W.

K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” J. Lightwave Technol. 15, 1424–1432 (1997).
[CrossRef]

Flavin, D. A.

D. A. Flavin, R. McBride, J. D. C. Jones, “Short-scan interferometric interrogation and multiplexing of fibre Bragg grating sensors,” Opt. Commun. 170, 347–353 (1999).
[CrossRef]

Flockhart, G. M. H.

G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 25–28 (2000).

Foote, P. D.

F. M. Haran, J. K. Rew, P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163–1166 (1998).
[CrossRef]

G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 25–28 (2000).

Fujinaga, S.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamahita, “Temperature-dependence of refractive-index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Ghosh, G.

G. Ghosh, “Model for the thermo-optical coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[CrossRef]

G. Ghosh, “Temperature dispersion of refractive-indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
[CrossRef]

G. Ghosh, “Temperature dispersion of refractive-indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
[CrossRef]

G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Golant, K. M.

O. V. Butov, K. M. Golant, I. V. Nikolin, “Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523–525 (2002).
[CrossRef]

Gupta, S.

Haran, F. M.

F. M. Haran, J. K. Rew, P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163–1166 (1998).
[CrossRef]

Hidayat, A.

Hjelme, D. R.

Iwasaki, T.

G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Jackson, D. A.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156–161 (1997).
[CrossRef]

James, S. W.

S. W. James, R. P. Tatam, A. Twin, M. Morgan, P. Noonan, “Strain response of fibre Bragg grating sensors at cryogenic temperatures,” Meas. Sci. Technol. 13, 1535–1539 (2002).
[CrossRef]

Jewell, J. M.

J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Am. Ceram. Soc. 74, 1689–1691 (1991).
[CrossRef]

Jones, J. D. C.

D. A. Flavin, R. McBride, J. D. C. Jones, “Short-scan interferometric interrogation and multiplexing of fibre Bragg grating sensors,” Opt. Commun. 170, 347–353 (1999).
[CrossRef]

G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 25–28 (2000).

Jones, K. T.

T. S. Priest, K. T. Jones, G. B. Scelsi, G. A. Woolsey, “Thermal coefficients of refractive index and expansion in optical fibre sensing,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), Paper OWC41.

Kalli, K.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156–161 (1997).
[CrossRef]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, Calif., 1999).

Kherbouche, F.

Kitamura, N.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamahita, “Temperature-dependence of refractive-index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Kitaoka, T.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamahita, “Temperature-dependence of refractive-index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

MacPherson, W. N.

G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 25–28 (2000).

Matsuoka, J.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamahita, “Temperature-dependence of refractive-index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

McBride, R.

D. A. Flavin, R. McBride, J. D. C. Jones, “Short-scan interferometric interrogation and multiplexing of fibre Bragg grating sensors,” Opt. Commun. 170, 347–353 (1999).
[CrossRef]

G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 25–28 (2000).

Mizunami, T.

Morgan, M.

S. W. James, R. P. Tatam, A. Twin, M. Morgan, P. Noonan, “Strain response of fibre Bragg grating sensors at cryogenic temperatures,” Meas. Sci. Technol. 13, 1535–1539 (2002).
[CrossRef]

Neegard, S.

Niay, P.

Nikolin, I. V.

O. V. Butov, K. M. Golant, I. V. Nikolin, “Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523–525 (2002).
[CrossRef]

Noonan, P.

S. W. James, R. P. Tatam, A. Twin, M. Morgan, P. Noonan, “Strain response of fibre Bragg grating sensors at cryogenic temperatures,” Meas. Sci. Technol. 13, 1535–1539 (2002).
[CrossRef]

Ozcan, M.

M. B. Reid, M. Ozcan, “Temperature dependence of fiber optic Bragg gratings at low temperatures,” Opt. Eng. 37, 237–240 (1998).
[CrossRef]

Poumellec, B.

Priest, T. S.

T. S. Priest, K. T. Jones, G. B. Scelsi, G. A. Woolsey, “Thermal coefficients of refractive index and expansion in optical fibre sensing,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), Paper OWC41.

Rambech, J. S.

Rao, Y. J.

Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31, 297–324 (1999).
[CrossRef]

Read, I.

G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 25–28 (2000).

Reekie, L.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156–161 (1997).
[CrossRef]

Reid, M. B.

M. B. Reid, M. Ozcan, “Temperature dependence of fiber optic Bragg gratings at low temperatures,” Opt. Eng. 37, 237–240 (1998).
[CrossRef]

Rew, J. K.

F. M. Haran, J. K. Rew, P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163–1166 (1998).
[CrossRef]

Riant, I.

Rochford, K. B.

Scelsi, G. B.

T. S. Priest, K. T. Jones, G. B. Scelsi, G. A. Woolsey, “Thermal coefficients of refractive index and expansion in optical fibre sensing,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), Paper OWC41.

Shimomura, T.

Sugden, K.

K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” J. Lightwave Technol. 15, 1424–1432 (1997).
[CrossRef]

Tatam, R. P.

S. W. James, R. P. Tatam, A. Twin, M. Morgan, P. Noonan, “Strain response of fibre Bragg grating sensors at cryogenic temperatures,” Meas. Sci. Technol. 13, 1535–1539 (2002).
[CrossRef]

Toyoda, T.

T. Toyoda, M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16, L97–L100 (1983).
[CrossRef]

Twin, A.

S. W. James, R. P. Tatam, A. Twin, M. Morgan, P. Noonan, “Strain response of fibre Bragg grating sensors at cryogenic temperatures,” Meas. Sci. Technol. 13, 1535–1539 (2002).
[CrossRef]

Wang, Q.

Webb, D. J.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156–161 (1997).
[CrossRef]

Williams, J. A. R.

K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” J. Lightwave Technol. 15, 1424–1432 (1997).
[CrossRef]

Woolsey, G. A.

T. S. Priest, K. T. Jones, G. B. Scelsi, G. A. Woolsey, “Thermal coefficients of refractive index and expansion in optical fibre sensing,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), Paper OWC41.

Yabe, M.

T. Toyoda, M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16, L97–L100 (1983).
[CrossRef]

Yamahita, H.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamahita, “Temperature-dependence of refractive-index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Yamao, T.

Zhang, L.

K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” J. Lightwave Technol. 15, 1424–1432 (1997).
[CrossRef]

G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 25–28 (2000).

Appl. Opt. (3)

Electron. Lett. (1)

O. V. Butov, K. M. Golant, I. V. Nikolin, “Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523–525 (2002).
[CrossRef]

IEE Proc. Optoelectron. (1)

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156–161 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G. Ghosh, “Temperature dispersion of refractive-indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
[CrossRef]

G. Ghosh, “Temperature dispersion of refractive-indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Am. Ceram. Soc. 74, 1689–1691 (1991).
[CrossRef]

J. Lightwave Technol. (3)

K. B. Rochford, S. D. Dyer, “Demultiplexing of interferometrically interrogated fiber Bragg grating sensors using Hilbert transform processing,” J. Lightwave Technol. 17, 831–836 (1999).
[CrossRef]

G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” J. Lightwave Technol. 15, 1424–1432 (1997).
[CrossRef]

J. Non-Cryst. Solids (2)

G. Ghosh, “Model for the thermo-optical coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[CrossRef]

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamahita, “Temperature-dependence of refractive-index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

J. Phys. D Appl. Phys. (1)

T. Toyoda, M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16, L97–L100 (1983).
[CrossRef]

Meas. Sci. Technol. (2)

F. M. Haran, J. K. Rew, P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163–1166 (1998).
[CrossRef]

S. W. James, R. P. Tatam, A. Twin, M. Morgan, P. Noonan, “Strain response of fibre Bragg grating sensors at cryogenic temperatures,” Meas. Sci. Technol. 13, 1535–1539 (2002).
[CrossRef]

Opt. Commun. (1)

D. A. Flavin, R. McBride, J. D. C. Jones, “Short-scan interferometric interrogation and multiplexing of fibre Bragg grating sensors,” Opt. Commun. 170, 347–353 (1999).
[CrossRef]

Opt. Eng. (1)

M. B. Reid, M. Ozcan, “Temperature dependence of fiber optic Bragg gratings at low temperatures,” Opt. Eng. 37, 237–240 (1998).
[CrossRef]

Opt. Lasers Eng. (1)

Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31, 297–324 (1999).
[CrossRef]

Other (3)

T. S. Priest, K. T. Jones, G. B. Scelsi, G. A. Woolsey, “Thermal coefficients of refractive index and expansion in optical fibre sensing,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), Paper OWC41.

G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 25–28 (2000).

R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, Calif., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of the experimental setup.

Fig. 2
Fig. 2

(a) Temperature response of the 1549-nm FBG: measured wavelength shift (crosses) and LSQ fit (solid curve). (b) Residual to the linear fit (triangles) and second-order fit (crosses) with 95% confidence belts.

Fig. 3
Fig. 3

Experimental setup for the secondary temperature characterization experiment.

Fig. 4
Fig. 4

(a) Temperature response of the 1557-nm FBG: measured data (darker curve) and linear LSQ fit (lighter curve). (b) Residual to the linear fit (triangles) and second-order fit (crosses) with 95% confidence belts.

Fig. 5
Fig. 5

(a) Temperature response of the 1549-nm FBG: measured wavelength change (crosses) and modeled data (solid curve). (b) Residual to the linear fit of experimental (triangles) and modeled (solid curve) data.

Fig. 6
Fig. 6

Wavelength residual to the linear fit of the 1557-nm FBG temperature response (triangles) and residual of the calculated wavelength response for the model (solid curve).

Fig. 7
Fig. 7

(a) Strain response of the 1524-nm FBG and (b) residual to the linear fit. (c) Response of the 1549-nm FBG and (d) residual to the linear fit.

Tables (2)

Tables Icon

Table 1 Calculated Coefficients and Standard Errors for LSQ Second-Order Fits to the FBGs’ Temperature Responses and the R2 Regression Coefficients

Tables Icon

Table 2 Linear Regression Analysis of Strain Response of a FBG Array for 1524-, 1549-, and 1573-nm FBGs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 n   d n d T = n 0 2 - 1 - 3 α R - 1 E eg d E eg d T   R 2 ,
R = λ 2 λ 2 - λ ig 2 ,

Metrics