Abstract

A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., >10°) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 × 900 distinguishable beams in a 10° (elevation) × 10° (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29° total scan range, and 1.5-dB optical insertion loss.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Beiser, R. B. Johnson, “Scanners,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Vol. II, pp. 19.1–19.57.
  2. L. Beiser, S. F. Sagan, G. F. Marshall, eds., Optical Scanning: Design and Application, Proc. SPIE3787, (1999).
  3. N. A. Riza, “Multiplexed optical scanner technology,” U.S. patent6,687,036 (3February2004).
  4. Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength multiplexed optical scanner,” Appl. Opt. 40, 6425–6438 (2001).
    [Crossref]
  5. Z. Yaqoob, N. A. Riza, “Free-space wavelength-multiplexed optical scanner demonstration,” Appl. Opt. 41, 5568–5573 (2002).
    [Crossref] [PubMed]
  6. Z. Yaqoob, M. A. Arain, N. A. Riza, “High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermo-refractive glass,” Appl. Opt. 42, 5251–5262 (2003).
    [Crossref] [PubMed]
  7. N. A. Riza, M. A. Arain, “Code-multiplexed optical scanner,” Appl. Opt. 42, 1493–1502 (2003).
    [Crossref] [PubMed]
  8. N. A. Riza, S. A. Khan, “Programmable high-speed polarization multiplexed optical scanner,” Opt. Lett. 28, 561–563 (2003).
    [Crossref] [PubMed]
  9. Z. Yaqoob, N. A. Riza, “Agile optical beam scanner using wavelength and space manipulations,” in Algorithms and Systems for Optical Information Processing V, B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 262–271 (2001).
    [Crossref]
  10. M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
    [Crossref]
  11. S. A. Khan, N. A. Riza, “High speed polarization-multiplexed optical scanner for three-dimensional scanning applications,” in Free-Space Laser Communication and Active Laser Illumination III, D. G. Voelz, J. C. Ricklin, eds., Proc. SPIE5160, 3–8 (2003).
  12. A. Marrakchi, Photonic Switching and Interconnects (Marcel Dekker, New York, 1993).
  13. Product specification sheet, Corning SMF-28 optical fiber (Corning, Inc., Corning, N.Y., 1998).

2003 (3)

2002 (1)

2001 (1)

2000 (1)

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[Crossref]

Arain, M. A.

Beiser, L.

L. Beiser, R. B. Johnson, “Scanners,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Vol. II, pp. 19.1–19.57.

Belopukhov, V. N.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[Crossref]

Johnson, R. B.

L. Beiser, R. B. Johnson, “Scanners,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Vol. II, pp. 19.1–19.57.

Khan, S. A.

N. A. Riza, S. A. Khan, “Programmable high-speed polarization multiplexed optical scanner,” Opt. Lett. 28, 561–563 (2003).
[Crossref] [PubMed]

S. A. Khan, N. A. Riza, “High speed polarization-multiplexed optical scanner for three-dimensional scanning applications,” in Free-Space Laser Communication and Active Laser Illumination III, D. G. Voelz, J. C. Ricklin, eds., Proc. SPIE5160, 3–8 (2003).

Loktev, M. Yu.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[Crossref]

Love, G. D.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[Crossref]

Marrakchi, A.

A. Marrakchi, Photonic Switching and Interconnects (Marcel Dekker, New York, 1993).

Naumov, A. F.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[Crossref]

Riza, N. A.

N. A. Riza, S. A. Khan, “Programmable high-speed polarization multiplexed optical scanner,” Opt. Lett. 28, 561–563 (2003).
[Crossref] [PubMed]

N. A. Riza, M. A. Arain, “Code-multiplexed optical scanner,” Appl. Opt. 42, 1493–1502 (2003).
[Crossref] [PubMed]

Z. Yaqoob, M. A. Arain, N. A. Riza, “High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermo-refractive glass,” Appl. Opt. 42, 5251–5262 (2003).
[Crossref] [PubMed]

Z. Yaqoob, N. A. Riza, “Free-space wavelength-multiplexed optical scanner demonstration,” Appl. Opt. 41, 5568–5573 (2002).
[Crossref] [PubMed]

Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength multiplexed optical scanner,” Appl. Opt. 40, 6425–6438 (2001).
[Crossref]

S. A. Khan, N. A. Riza, “High speed polarization-multiplexed optical scanner for three-dimensional scanning applications,” in Free-Space Laser Communication and Active Laser Illumination III, D. G. Voelz, J. C. Ricklin, eds., Proc. SPIE5160, 3–8 (2003).

Z. Yaqoob, N. A. Riza, “Agile optical beam scanner using wavelength and space manipulations,” in Algorithms and Systems for Optical Information Processing V, B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 262–271 (2001).
[Crossref]

N. A. Riza, “Multiplexed optical scanner technology,” U.S. patent6,687,036 (3February2004).

Rizvi, A. A.

Vdovin, G. V.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[Crossref]

Vladimirov, F. L.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[Crossref]

Yaqoob, Z.

Appl. Opt. (4)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71, 3290–3297 (2000).
[Crossref]

Other (7)

S. A. Khan, N. A. Riza, “High speed polarization-multiplexed optical scanner for three-dimensional scanning applications,” in Free-Space Laser Communication and Active Laser Illumination III, D. G. Voelz, J. C. Ricklin, eds., Proc. SPIE5160, 3–8 (2003).

A. Marrakchi, Photonic Switching and Interconnects (Marcel Dekker, New York, 1993).

Product specification sheet, Corning SMF-28 optical fiber (Corning, Inc., Corning, N.Y., 1998).

Z. Yaqoob, N. A. Riza, “Agile optical beam scanner using wavelength and space manipulations,” in Algorithms and Systems for Optical Information Processing V, B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 262–271 (2001).
[Crossref]

L. Beiser, R. B. Johnson, “Scanners,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Vol. II, pp. 19.1–19.57.

L. Beiser, S. F. Sagan, G. F. Marshall, eds., Optical Scanning: Design and Application, Proc. SPIE3787, (1999).

N. A. Riza, “Multiplexed optical scanner technology,” U.S. patent6,687,036 (3February2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the proposed high-resolution two-dimensional S-MOS: N, number of output ports of the fiber-optic switch; M, number of fibers along the x or y direction in the 2-D fiber array.

Fig. 2
Fig. 2

One-dimensional x-direction scan polarization-insensitive fine-scanner design options for the S-MOS: (a) design with cross-director NLC deflectors, (b) design with aligned-director NLC deflectors with a half-wave plate (HWP) at 45° to the director axis.

Fig. 3
Fig. 3

Proof-of-concept experimental setup for a 1-D high-resolution S-MOS with an 8-channel SMF array: PC, polarization controller.

Fig. 4
Fig. 4

Images of 1-D scan S-MOS scanning beam spots generated (from left to right) as the input light is routed to output ports 1 through 8 of the optical switch.

Fig. 5
Fig. 5

Images of six sample 1-D scan S-MOS scanning beam spots generated between optical switch settings S2 (at the left) and S3 (at the right). The NLC deflector used a 3.8-V drive signal with the frequency settings shown (Hz) to generate the six NLC-generated spots (from left to right).

Tables (1)

Tables Icon

Table 1 Parameters of Various S-MOS Design

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

θ = - tan - 1 r / f ,
d e = 2 λ f   cos   θ π w inc ,
θ = - tan - 1 nx p / f ,
- M - 1 2 n M - 1 2
Δ θ = 2   tan - 1 M - 1 x p 2 f .

Metrics