Abstract

The development of an accurate and reliable noninvasive near-infrared (NIR) glucose sensor hinges on the success in addressing the sensitivity and the specificity problems associated with the weak glucose signals and the overlapping NIR spectra. Spectroscopic hardware parameters most relevant to noninvasive blood glucose measurement are discussed, which include the optical throughput, integration time, spectral range, and the spectral resolution. We propose a unique spectroscopic system using a continuously rotating interference filter, which produces a signal-to-noise ratio of the order of 105 and is estimated to be the minimum required for successful in vivo glucose sensing. Using a classical least-squares algorithm and a spectral range between 2180 and 2312 nm, we extracted clinically relevant glucose concentrations in multicomponent solutions containing bovine serum albumin, triacetin, lactate, and urea.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Arnold, G. W. Small, “Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier transform near-infrared spectra,” Anal. Chem. 62, 1457–1464 (1990).
    [CrossRef] [PubMed]
  2. L. A. Marquardt, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of glucose in a protein matrix,” Anal. Chem. 65, 3271–3278 (1993).
    [CrossRef] [PubMed]
  3. S. Pan, H. Chung, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides,” Anal. Chem. 68, 1124–1135 (1996).
    [CrossRef] [PubMed]
  4. M. J. Mattu, G. W. Small, M. A. Arnold, “Determination of glucose in a biological matrix by multivariate analysis of multiple bandpass-filtered Fourier transform near-infrared interferograms,” Anal. Chem. 69, 4695–4702 (1997).
    [CrossRef]
  5. N. A. Cingo, G. W. Small, M. A. Arnold, “Determination of glucose in a synthetic biological matrix with decimated time-domain filtered near-infrared interferogram data,” Vib. Spectrosc. 23, 103–107 (2000).
    [CrossRef]
  6. V. A. Saptari, K. Youcef-Toumi, “Sensitivity analysis of near infrared glucose absorption signals: toward noninvasive blood glucose sensing,” in Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics, A. V. Priezzhev, P. A. Öberg, eds., Proc. SPIE4163, 45–54 (2000).
    [CrossRef]
  7. G. W. Small, M. A. Arnold, L. A. Marquardt, “Strategies for coupling digital filtering with partial least-squares regression: application to the determination of glucose in plasma by Fourier transform near-infrared spectroscopy,” Anal. Chem. 65, 3279–3289 (1993).
    [CrossRef] [PubMed]
  8. F. M. Ham, G. M. Cohen, I. Kostanic, B. R. Gooch, “Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum,” Physiol. Meas. 17, 1–20 (1996).
    [CrossRef] [PubMed]
  9. H. M. Heise, A. Bittner, “Multivariate calibration for near-infrared spectroscopic assays of blood substrates in human plasma based on variable selection using PLS-regression vector choices,” Fresenius J. Anal. Chem. 362, 141–147 (1998).
    [CrossRef]
  10. K. H. Hazen, M. A. Arnold, G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near infrared transmission spectroscopy,” Anal. Chim. Acta 371, 255–267 (1998).
    [CrossRef]
  11. D. M. Haaland, M. R. Robinson, G. W. Koepp, E. V. Thomas, R. P. Eaton, “Reagentless near-infrared determination of glucose in whole blood using multivariate calibration,” Appl. Spectrosc. 46, 1575–1578 (1992).
    [CrossRef]
  12. M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. (Washington, D.C.) 38, 1618–1622 (1992).
  13. R. Marbach, T. H. Koschinsky, F. A. Gries, H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47, 875–881 (1993).
    [CrossRef]
  14. U. A. Müller, B. Mertes, C. FischBacher, K. U. Jageman, K. Danzer, “Non-invasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).
    [PubMed]
  15. C. Fischbacher, K. U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359, 78–82 (1997).
    [CrossRef]
  16. T. B. Blank, T. L. Ruchti, A. D. Lorenz, S. L. Monfre, M. R. Makarewicz, K. H. Hazen, “Clinical results from a non-invasive blood glucose monitor,” in Biomedical Nanotechnology Architectures and Applications, D. J. Bornhop, ed., Proc. SPIE4626, 1–10 (2002).
  17. G. A. Threatte, J. B. Henry, “Carbohydrates,” in Clinical Diagnosis and Management by Laboratory Methods, J. B. Henry, ed. (Saunders, Philadelphia, Pa., 1996).
  18. D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
    [CrossRef]
  19. W. R. McCluney, Introduction to Radiometry and Photometry (Artech House, Norwood, Mass., 1994).
  20. E. V. Loewenstein, “Fourier spectroscopy: an introduction,” in Aspen International Conference on Fourier Spectroscopy, G. A. Vanaase, A. T. Stair, D. J. Baker, eds. (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1970), pp. 3–17.
  21. V. A. Saptari, Fourier-Transform Spectroscopy Instrumentation Engineering, Vol. TT61 of the SPIE Tutorial Texts (SPIE, Bellingham, Wash., 2003).
    [CrossRef]
  22. M.-L. Juntilla, “Stationary Fourier-transform spectrometer,” Appl. Opt. 31, 4106–4112 (1992).
    [CrossRef]
  23. M. P. Dierking, M. A. Karim, “Solid-block stationary Fourier-transform spectrometer,” Appl. Opt. 35, 84–89 (1996).
    [CrossRef] [PubMed]

2000 (1)

N. A. Cingo, G. W. Small, M. A. Arnold, “Determination of glucose in a synthetic biological matrix with decimated time-domain filtered near-infrared interferogram data,” Vib. Spectrosc. 23, 103–107 (2000).
[CrossRef]

1998 (2)

H. M. Heise, A. Bittner, “Multivariate calibration for near-infrared spectroscopic assays of blood substrates in human plasma based on variable selection using PLS-regression vector choices,” Fresenius J. Anal. Chem. 362, 141–147 (1998).
[CrossRef]

K. H. Hazen, M. A. Arnold, G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near infrared transmission spectroscopy,” Anal. Chim. Acta 371, 255–267 (1998).
[CrossRef]

1997 (3)

M. J. Mattu, G. W. Small, M. A. Arnold, “Determination of glucose in a biological matrix by multivariate analysis of multiple bandpass-filtered Fourier transform near-infrared interferograms,” Anal. Chem. 69, 4695–4702 (1997).
[CrossRef]

U. A. Müller, B. Mertes, C. FischBacher, K. U. Jageman, K. Danzer, “Non-invasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).
[PubMed]

C. Fischbacher, K. U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359, 78–82 (1997).
[CrossRef]

1996 (3)

M. P. Dierking, M. A. Karim, “Solid-block stationary Fourier-transform spectrometer,” Appl. Opt. 35, 84–89 (1996).
[CrossRef] [PubMed]

F. M. Ham, G. M. Cohen, I. Kostanic, B. R. Gooch, “Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum,” Physiol. Meas. 17, 1–20 (1996).
[CrossRef] [PubMed]

S. Pan, H. Chung, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides,” Anal. Chem. 68, 1124–1135 (1996).
[CrossRef] [PubMed]

1993 (3)

L. A. Marquardt, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of glucose in a protein matrix,” Anal. Chem. 65, 3271–3278 (1993).
[CrossRef] [PubMed]

R. Marbach, T. H. Koschinsky, F. A. Gries, H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47, 875–881 (1993).
[CrossRef]

G. W. Small, M. A. Arnold, L. A. Marquardt, “Strategies for coupling digital filtering with partial least-squares regression: application to the determination of glucose in plasma by Fourier transform near-infrared spectroscopy,” Anal. Chem. 65, 3279–3289 (1993).
[CrossRef] [PubMed]

1992 (3)

M.-L. Juntilla, “Stationary Fourier-transform spectrometer,” Appl. Opt. 31, 4106–4112 (1992).
[CrossRef]

D. M. Haaland, M. R. Robinson, G. W. Koepp, E. V. Thomas, R. P. Eaton, “Reagentless near-infrared determination of glucose in whole blood using multivariate calibration,” Appl. Spectrosc. 46, 1575–1578 (1992).
[CrossRef]

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. (Washington, D.C.) 38, 1618–1622 (1992).

1990 (1)

M. A. Arnold, G. W. Small, “Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier transform near-infrared spectra,” Anal. Chem. 62, 1457–1464 (1990).
[CrossRef] [PubMed]

1988 (1)

D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Arnold, M. A.

N. A. Cingo, G. W. Small, M. A. Arnold, “Determination of glucose in a synthetic biological matrix with decimated time-domain filtered near-infrared interferogram data,” Vib. Spectrosc. 23, 103–107 (2000).
[CrossRef]

K. H. Hazen, M. A. Arnold, G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near infrared transmission spectroscopy,” Anal. Chim. Acta 371, 255–267 (1998).
[CrossRef]

M. J. Mattu, G. W. Small, M. A. Arnold, “Determination of glucose in a biological matrix by multivariate analysis of multiple bandpass-filtered Fourier transform near-infrared interferograms,” Anal. Chem. 69, 4695–4702 (1997).
[CrossRef]

S. Pan, H. Chung, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides,” Anal. Chem. 68, 1124–1135 (1996).
[CrossRef] [PubMed]

L. A. Marquardt, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of glucose in a protein matrix,” Anal. Chem. 65, 3271–3278 (1993).
[CrossRef] [PubMed]

G. W. Small, M. A. Arnold, L. A. Marquardt, “Strategies for coupling digital filtering with partial least-squares regression: application to the determination of glucose in plasma by Fourier transform near-infrared spectroscopy,” Anal. Chem. 65, 3279–3289 (1993).
[CrossRef] [PubMed]

M. A. Arnold, G. W. Small, “Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier transform near-infrared spectra,” Anal. Chem. 62, 1457–1464 (1990).
[CrossRef] [PubMed]

Bittner, A.

H. M. Heise, A. Bittner, “Multivariate calibration for near-infrared spectroscopic assays of blood substrates in human plasma based on variable selection using PLS-regression vector choices,” Fresenius J. Anal. Chem. 362, 141–147 (1998).
[CrossRef]

Blank, T. B.

T. B. Blank, T. L. Ruchti, A. D. Lorenz, S. L. Monfre, M. R. Makarewicz, K. H. Hazen, “Clinical results from a non-invasive blood glucose monitor,” in Biomedical Nanotechnology Architectures and Applications, D. J. Bornhop, ed., Proc. SPIE4626, 1–10 (2002).

Chung, H.

S. Pan, H. Chung, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides,” Anal. Chem. 68, 1124–1135 (1996).
[CrossRef] [PubMed]

Cingo, N. A.

N. A. Cingo, G. W. Small, M. A. Arnold, “Determination of glucose in a synthetic biological matrix with decimated time-domain filtered near-infrared interferogram data,” Vib. Spectrosc. 23, 103–107 (2000).
[CrossRef]

Cohen, G. M.

F. M. Ham, G. M. Cohen, I. Kostanic, B. R. Gooch, “Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum,” Physiol. Meas. 17, 1–20 (1996).
[CrossRef] [PubMed]

Danzer, K.

C. Fischbacher, K. U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359, 78–82 (1997).
[CrossRef]

U. A. Müller, B. Mertes, C. FischBacher, K. U. Jageman, K. Danzer, “Non-invasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).
[PubMed]

Dierking, M. P.

Eaton, R. P.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. (Washington, D.C.) 38, 1618–1622 (1992).

D. M. Haaland, M. R. Robinson, G. W. Koepp, E. V. Thomas, R. P. Eaton, “Reagentless near-infrared determination of glucose in whole blood using multivariate calibration,” Appl. Spectrosc. 46, 1575–1578 (1992).
[CrossRef]

Fischbacher, C.

C. Fischbacher, K. U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359, 78–82 (1997).
[CrossRef]

U. A. Müller, B. Mertes, C. FischBacher, K. U. Jageman, K. Danzer, “Non-invasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).
[PubMed]

Gooch, B. R.

F. M. Ham, G. M. Cohen, I. Kostanic, B. R. Gooch, “Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum,” Physiol. Meas. 17, 1–20 (1996).
[CrossRef] [PubMed]

Gries, F. A.

Haaland, D. M.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. (Washington, D.C.) 38, 1618–1622 (1992).

D. M. Haaland, M. R. Robinson, G. W. Koepp, E. V. Thomas, R. P. Eaton, “Reagentless near-infrared determination of glucose in whole blood using multivariate calibration,” Appl. Spectrosc. 46, 1575–1578 (1992).
[CrossRef]

D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Ham, F. M.

F. M. Ham, G. M. Cohen, I. Kostanic, B. R. Gooch, “Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum,” Physiol. Meas. 17, 1–20 (1996).
[CrossRef] [PubMed]

Hazen, K. H.

K. H. Hazen, M. A. Arnold, G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near infrared transmission spectroscopy,” Anal. Chim. Acta 371, 255–267 (1998).
[CrossRef]

T. B. Blank, T. L. Ruchti, A. D. Lorenz, S. L. Monfre, M. R. Makarewicz, K. H. Hazen, “Clinical results from a non-invasive blood glucose monitor,” in Biomedical Nanotechnology Architectures and Applications, D. J. Bornhop, ed., Proc. SPIE4626, 1–10 (2002).

Heise, H. M.

H. M. Heise, A. Bittner, “Multivariate calibration for near-infrared spectroscopic assays of blood substrates in human plasma based on variable selection using PLS-regression vector choices,” Fresenius J. Anal. Chem. 362, 141–147 (1998).
[CrossRef]

R. Marbach, T. H. Koschinsky, F. A. Gries, H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47, 875–881 (1993).
[CrossRef]

Henry, J. B.

G. A. Threatte, J. B. Henry, “Carbohydrates,” in Clinical Diagnosis and Management by Laboratory Methods, J. B. Henry, ed. (Saunders, Philadelphia, Pa., 1996).

Jageman, K. U.

U. A. Müller, B. Mertes, C. FischBacher, K. U. Jageman, K. Danzer, “Non-invasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).
[PubMed]

Jagemann, K. U.

C. Fischbacher, K. U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359, 78–82 (1997).
[CrossRef]

Juntilla, M.-L.

Karim, M. A.

Koepp, G. W.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. (Washington, D.C.) 38, 1618–1622 (1992).

D. M. Haaland, M. R. Robinson, G. W. Koepp, E. V. Thomas, R. P. Eaton, “Reagentless near-infrared determination of glucose in whole blood using multivariate calibration,” Appl. Spectrosc. 46, 1575–1578 (1992).
[CrossRef]

Koschinsky, T. H.

Kostanic, I.

F. M. Ham, G. M. Cohen, I. Kostanic, B. R. Gooch, “Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum,” Physiol. Meas. 17, 1–20 (1996).
[CrossRef] [PubMed]

Loewenstein, E. V.

E. V. Loewenstein, “Fourier spectroscopy: an introduction,” in Aspen International Conference on Fourier Spectroscopy, G. A. Vanaase, A. T. Stair, D. J. Baker, eds. (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1970), pp. 3–17.

Lorenz, A. D.

T. B. Blank, T. L. Ruchti, A. D. Lorenz, S. L. Monfre, M. R. Makarewicz, K. H. Hazen, “Clinical results from a non-invasive blood glucose monitor,” in Biomedical Nanotechnology Architectures and Applications, D. J. Bornhop, ed., Proc. SPIE4626, 1–10 (2002).

Makarewicz, M. R.

T. B. Blank, T. L. Ruchti, A. D. Lorenz, S. L. Monfre, M. R. Makarewicz, K. H. Hazen, “Clinical results from a non-invasive blood glucose monitor,” in Biomedical Nanotechnology Architectures and Applications, D. J. Bornhop, ed., Proc. SPIE4626, 1–10 (2002).

Marbach, R.

Marquardt, L. A.

G. W. Small, M. A. Arnold, L. A. Marquardt, “Strategies for coupling digital filtering with partial least-squares regression: application to the determination of glucose in plasma by Fourier transform near-infrared spectroscopy,” Anal. Chem. 65, 3279–3289 (1993).
[CrossRef] [PubMed]

L. A. Marquardt, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of glucose in a protein matrix,” Anal. Chem. 65, 3271–3278 (1993).
[CrossRef] [PubMed]

Mattu, M. J.

M. J. Mattu, G. W. Small, M. A. Arnold, “Determination of glucose in a biological matrix by multivariate analysis of multiple bandpass-filtered Fourier transform near-infrared interferograms,” Anal. Chem. 69, 4695–4702 (1997).
[CrossRef]

McCluney, W. R.

W. R. McCluney, Introduction to Radiometry and Photometry (Artech House, Norwood, Mass., 1994).

Mertes, B.

U. A. Müller, B. Mertes, C. FischBacher, K. U. Jageman, K. Danzer, “Non-invasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).
[PubMed]

Monfre, S. L.

T. B. Blank, T. L. Ruchti, A. D. Lorenz, S. L. Monfre, M. R. Makarewicz, K. H. Hazen, “Clinical results from a non-invasive blood glucose monitor,” in Biomedical Nanotechnology Architectures and Applications, D. J. Bornhop, ed., Proc. SPIE4626, 1–10 (2002).

Müller, U. A.

C. Fischbacher, K. U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359, 78–82 (1997).
[CrossRef]

U. A. Müller, B. Mertes, C. FischBacher, K. U. Jageman, K. Danzer, “Non-invasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).
[PubMed]

Pan, S.

S. Pan, H. Chung, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides,” Anal. Chem. 68, 1124–1135 (1996).
[CrossRef] [PubMed]

Papenkordt, L.

C. Fischbacher, K. U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359, 78–82 (1997).
[CrossRef]

Robinson, M. R.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. (Washington, D.C.) 38, 1618–1622 (1992).

D. M. Haaland, M. R. Robinson, G. W. Koepp, E. V. Thomas, R. P. Eaton, “Reagentless near-infrared determination of glucose in whole blood using multivariate calibration,” Appl. Spectrosc. 46, 1575–1578 (1992).
[CrossRef]

Robinson, P. L.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. (Washington, D.C.) 38, 1618–1622 (1992).

Ruchti, T. L.

T. B. Blank, T. L. Ruchti, A. D. Lorenz, S. L. Monfre, M. R. Makarewicz, K. H. Hazen, “Clinical results from a non-invasive blood glucose monitor,” in Biomedical Nanotechnology Architectures and Applications, D. J. Bornhop, ed., Proc. SPIE4626, 1–10 (2002).

Saptari, V. A.

V. A. Saptari, Fourier-Transform Spectroscopy Instrumentation Engineering, Vol. TT61 of the SPIE Tutorial Texts (SPIE, Bellingham, Wash., 2003).
[CrossRef]

V. A. Saptari, K. Youcef-Toumi, “Sensitivity analysis of near infrared glucose absorption signals: toward noninvasive blood glucose sensing,” in Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics, A. V. Priezzhev, P. A. Öberg, eds., Proc. SPIE4163, 45–54 (2000).
[CrossRef]

Schüler, J.

C. Fischbacher, K. U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359, 78–82 (1997).
[CrossRef]

Small, G. W.

N. A. Cingo, G. W. Small, M. A. Arnold, “Determination of glucose in a synthetic biological matrix with decimated time-domain filtered near-infrared interferogram data,” Vib. Spectrosc. 23, 103–107 (2000).
[CrossRef]

K. H. Hazen, M. A. Arnold, G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near infrared transmission spectroscopy,” Anal. Chim. Acta 371, 255–267 (1998).
[CrossRef]

M. J. Mattu, G. W. Small, M. A. Arnold, “Determination of glucose in a biological matrix by multivariate analysis of multiple bandpass-filtered Fourier transform near-infrared interferograms,” Anal. Chem. 69, 4695–4702 (1997).
[CrossRef]

S. Pan, H. Chung, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides,” Anal. Chem. 68, 1124–1135 (1996).
[CrossRef] [PubMed]

L. A. Marquardt, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of glucose in a protein matrix,” Anal. Chem. 65, 3271–3278 (1993).
[CrossRef] [PubMed]

G. W. Small, M. A. Arnold, L. A. Marquardt, “Strategies for coupling digital filtering with partial least-squares regression: application to the determination of glucose in plasma by Fourier transform near-infrared spectroscopy,” Anal. Chem. 65, 3279–3289 (1993).
[CrossRef] [PubMed]

M. A. Arnold, G. W. Small, “Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier transform near-infrared spectra,” Anal. Chem. 62, 1457–1464 (1990).
[CrossRef] [PubMed]

Stallard, B. R.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. (Washington, D.C.) 38, 1618–1622 (1992).

Thomas, E. V.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. (Washington, D.C.) 38, 1618–1622 (1992).

D. M. Haaland, M. R. Robinson, G. W. Koepp, E. V. Thomas, R. P. Eaton, “Reagentless near-infrared determination of glucose in whole blood using multivariate calibration,” Appl. Spectrosc. 46, 1575–1578 (1992).
[CrossRef]

D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Threatte, G. A.

G. A. Threatte, J. B. Henry, “Carbohydrates,” in Clinical Diagnosis and Management by Laboratory Methods, J. B. Henry, ed. (Saunders, Philadelphia, Pa., 1996).

Youcef-Toumi, K.

V. A. Saptari, K. Youcef-Toumi, “Sensitivity analysis of near infrared glucose absorption signals: toward noninvasive blood glucose sensing,” in Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics, A. V. Priezzhev, P. A. Öberg, eds., Proc. SPIE4163, 45–54 (2000).
[CrossRef]

Anal. Chem. (6)

M. A. Arnold, G. W. Small, “Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier transform near-infrared spectra,” Anal. Chem. 62, 1457–1464 (1990).
[CrossRef] [PubMed]

L. A. Marquardt, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of glucose in a protein matrix,” Anal. Chem. 65, 3271–3278 (1993).
[CrossRef] [PubMed]

S. Pan, H. Chung, M. A. Arnold, G. W. Small, “Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides,” Anal. Chem. 68, 1124–1135 (1996).
[CrossRef] [PubMed]

M. J. Mattu, G. W. Small, M. A. Arnold, “Determination of glucose in a biological matrix by multivariate analysis of multiple bandpass-filtered Fourier transform near-infrared interferograms,” Anal. Chem. 69, 4695–4702 (1997).
[CrossRef]

G. W. Small, M. A. Arnold, L. A. Marquardt, “Strategies for coupling digital filtering with partial least-squares regression: application to the determination of glucose in plasma by Fourier transform near-infrared spectroscopy,” Anal. Chem. 65, 3279–3289 (1993).
[CrossRef] [PubMed]

D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Anal. Chim. Acta (1)

K. H. Hazen, M. A. Arnold, G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near infrared transmission spectroscopy,” Anal. Chim. Acta 371, 255–267 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (2)

Clin. Chem. (Washington, D.C.) (1)

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. (Washington, D.C.) 38, 1618–1622 (1992).

Fresenius J. Anal. Chem. (2)

C. Fischbacher, K. U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359, 78–82 (1997).
[CrossRef]

H. M. Heise, A. Bittner, “Multivariate calibration for near-infrared spectroscopic assays of blood substrates in human plasma based on variable selection using PLS-regression vector choices,” Fresenius J. Anal. Chem. 362, 141–147 (1998).
[CrossRef]

Int. J. Artif. Organs (1)

U. A. Müller, B. Mertes, C. FischBacher, K. U. Jageman, K. Danzer, “Non-invasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).
[PubMed]

Physiol. Meas. (1)

F. M. Ham, G. M. Cohen, I. Kostanic, B. R. Gooch, “Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum,” Physiol. Meas. 17, 1–20 (1996).
[CrossRef] [PubMed]

Vib. Spectrosc. (1)

N. A. Cingo, G. W. Small, M. A. Arnold, “Determination of glucose in a synthetic biological matrix with decimated time-domain filtered near-infrared interferogram data,” Vib. Spectrosc. 23, 103–107 (2000).
[CrossRef]

Other (6)

V. A. Saptari, K. Youcef-Toumi, “Sensitivity analysis of near infrared glucose absorption signals: toward noninvasive blood glucose sensing,” in Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics, A. V. Priezzhev, P. A. Öberg, eds., Proc. SPIE4163, 45–54 (2000).
[CrossRef]

T. B. Blank, T. L. Ruchti, A. D. Lorenz, S. L. Monfre, M. R. Makarewicz, K. H. Hazen, “Clinical results from a non-invasive blood glucose monitor,” in Biomedical Nanotechnology Architectures and Applications, D. J. Bornhop, ed., Proc. SPIE4626, 1–10 (2002).

G. A. Threatte, J. B. Henry, “Carbohydrates,” in Clinical Diagnosis and Management by Laboratory Methods, J. B. Henry, ed. (Saunders, Philadelphia, Pa., 1996).

W. R. McCluney, Introduction to Radiometry and Photometry (Artech House, Norwood, Mass., 1994).

E. V. Loewenstein, “Fourier spectroscopy: an introduction,” in Aspen International Conference on Fourier Spectroscopy, G. A. Vanaase, A. T. Stair, D. J. Baker, eds. (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1970), pp. 3–17.

V. A. Saptari, Fourier-Transform Spectroscopy Instrumentation Engineering, Vol. TT61 of the SPIE Tutorial Texts (SPIE, Bellingham, Wash., 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Normalized absorption spectra of glucose, triacetin, BSA, lactate, and urea obtained by a monochromator.

Fig. 2
Fig. 2

Optical schematic of the CRFS. A setup for transmittance measurements is shown, although a setup for reflectance measurements is also possible.

Fig. 3
Fig. 3

Plot of calculated transmitted wavelength as a function of incident angle for a filter with n eff = 2.13 and λ0 = 2315.

Fig. 4
Fig. 4

Simulation results of glucose prediction in matrices of interferences. Top left: glucose in 0–15-mg/dl lactate variations. Top right: glucose in 0–180-mg/dl triacetin variations. Bottom left: glucose in 0–5800-mg/dl BSA variations. Bottom right: glucose in 0–33-mg/dl urea variations. The interfering component’s concentration is simultaneously increasing (data with x) and decreasing (data with o).

Fig. 5
Fig. 5

Optical throughput of a spectrometer’s collimating system. The spectral resolution requirement determines the maximum-allowable beam divergence. An aperture is used to limit the divergence.

Fig. 6
Fig. 6

Photograph of the rotating filter assembly.

Fig. 7
Fig. 7

Four typical 100% lines obtained by the CRFS.

Fig. 8
Fig. 8

Basis spectra obtained by the rotating-filter spectrometer. The raw spectra are baseline corrected by a third-order polynomial subtraction and amplitude normalized. Sample concentrations used to obtain the spectra are glucose, 200 mg/dl; BSA, 8000 mg/dl; triacetin, 200 mg/dl; lactate, 200 mg/dl.

Fig. 9
Fig. 9

Glucose prediction correlation plot for multicomponent aqueous solutions. The solid line shows a linear regression fit. Glucose concentrations are within a clinically relevant range.

Tables (2)

Tables Icon

Table 1 Throughput Comparison

Tables Icon

Table 2 Compositions of Synthetic Biological Samplesa

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

SNR=1100% linerms,
SNR  ΘζN1/2.
λT=λ01-n0neff2 sin2 φ1/2,
sλ= aiλcil,
q=sATAAT-1,
Θ=AapertureΩ,
Ω=Afillf2,
Θ=AapertureAfillf2.
Δφmax=dλdφmax-1Δλ.
Δφmax=af,
af=dλdφmax-1Δλ.
Θfilter=π a2f2 Afill=πdλdφmax-1Δλ2Afill.
ΘFTS=πR Afill,
Θgrating=lfR Afill,

Metrics