Abstract

A photometer and tristimulus colorimeter has been developed at the National Institute of Standards and Technology (NIST) to realize a color scale. A novel construction was developed to implement the spectral-responsivity-based scale with small uncertainty. The new device can be used as a reference illuminance and luminance meter as well. Temperature-controlled filter combinations, with 5–8 layers in one package, are used to match the responsivity of a silicon tunnel-trap detector to the CIE color-matching functions with small spectral mismatch values (f 1′). Design considerations to extend the tunnel-trap detector with replaceable single and double apertures and changeable filter combinations are described. The design and fabrication of the filter packages and the dependence of the f 1′ values on the thickness of the filter layers are discussed. The colorimeter was characterized for angular, spatial, and spectral responsivity. An improved preamplifier can convert current to voltage in an 11-decade dynamic range with 0.01% uncertainty.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Eppeldauer, “Spectral response based calibration method of tristimulus colorimeters,” J. Res. Natl. Inst. Stand. Technol. 103, 615 (1998).
    [CrossRef]
  2. Publication CIE No. 69 (Central Bureau of the CIE, Vienna, 1987).
  3. All uncertainties discussed in this paper are relative expanded uncertainties with a coverage factor of two.
  4. G. P. Eppeldauer, S. W. Brown, C. C. Miller, K.R. Lykke, “Improved accuracy photometric and tristimulus-color scales based on spectral irradiance responsivity,” in Proceedings of the Twenty-Fifth Session of the CIE (Central Bureau of the CIE, Vienna, 2003), Vol. 1, pp. D2-30–D2-33.
  5. D. W. Allen, G. P. Eppeldauer, S. W. Brown, E. A. Early, B. C. Johnson, K. R. Lykke, “Calibration and characterization of trap detector filter radiometers,” in Earth Observing Systems VIII, W. L. Barnes, ed., Proc. SPIE5151, 471–479 (2003).
    [CrossRef]
  6. G. P. Eppeldauer, D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap Si-radiometer,” J. Res. Natl. Inst. Stand. Technol. 105, 813–828 (2000).
    [CrossRef]
  7. T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the NIST high accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996).
    [CrossRef] [PubMed]
  8. The mention of certain commercial products in this paper is for information purposes only and does not constitute an endorsement of the product by the authors or their institutions.
  9. G. P. Eppeldauer, S. W. Brown, T. C. Larason, M. Racz, K. R. Lykke, “Realization of a spectral radiance responsivity scale with a laser-based source and Si radiance meters,” Metrologia 37, 531–534 (2000).
    [CrossRef]
  10. G. Czibula, “Producing a detector with predetermined spectral responsivity,” in Proceedings of the International Measurement Confederation (IMEKO) 10th International Symposium of the Technical Committee on Photon Detectors (IMEKO Secretariat, Budapest, 1982), Vol. 1, pp. 189–199.
  11. Publication CIE No. 15.2 (Central Bureau of the CIE, Vienna, 1986).
  12. J. P. Makai, G. Czibula, J. Schanda, “The importance of the spectral responsivity correction in case of photoelectrical elements,” in Proceedings of the International Measurement Confederation (IMEKO) 11th International Symposium of the Technical Committee on Photon Detectors (IMEKO Secretariat, Budapest) (1984), pp. 215–225.

2000 (2)

G. P. Eppeldauer, D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap Si-radiometer,” J. Res. Natl. Inst. Stand. Technol. 105, 813–828 (2000).
[CrossRef]

G. P. Eppeldauer, S. W. Brown, T. C. Larason, M. Racz, K. R. Lykke, “Realization of a spectral radiance responsivity scale with a laser-based source and Si radiance meters,” Metrologia 37, 531–534 (2000).
[CrossRef]

1998 (1)

G. Eppeldauer, “Spectral response based calibration method of tristimulus colorimeters,” J. Res. Natl. Inst. Stand. Technol. 103, 615 (1998).
[CrossRef]

1996 (1)

Allen, D. W.

D. W. Allen, G. P. Eppeldauer, S. W. Brown, E. A. Early, B. C. Johnson, K. R. Lykke, “Calibration and characterization of trap detector filter radiometers,” in Earth Observing Systems VIII, W. L. Barnes, ed., Proc. SPIE5151, 471–479 (2003).
[CrossRef]

Brown, S. W.

G. P. Eppeldauer, S. W. Brown, T. C. Larason, M. Racz, K. R. Lykke, “Realization of a spectral radiance responsivity scale with a laser-based source and Si radiance meters,” Metrologia 37, 531–534 (2000).
[CrossRef]

G. P. Eppeldauer, S. W. Brown, C. C. Miller, K.R. Lykke, “Improved accuracy photometric and tristimulus-color scales based on spectral irradiance responsivity,” in Proceedings of the Twenty-Fifth Session of the CIE (Central Bureau of the CIE, Vienna, 2003), Vol. 1, pp. D2-30–D2-33.

D. W. Allen, G. P. Eppeldauer, S. W. Brown, E. A. Early, B. C. Johnson, K. R. Lykke, “Calibration and characterization of trap detector filter radiometers,” in Earth Observing Systems VIII, W. L. Barnes, ed., Proc. SPIE5151, 471–479 (2003).
[CrossRef]

Cromer, C. L.

Czibula, G.

G. Czibula, “Producing a detector with predetermined spectral responsivity,” in Proceedings of the International Measurement Confederation (IMEKO) 10th International Symposium of the Technical Committee on Photon Detectors (IMEKO Secretariat, Budapest, 1982), Vol. 1, pp. 189–199.

J. P. Makai, G. Czibula, J. Schanda, “The importance of the spectral responsivity correction in case of photoelectrical elements,” in Proceedings of the International Measurement Confederation (IMEKO) 11th International Symposium of the Technical Committee on Photon Detectors (IMEKO Secretariat, Budapest) (1984), pp. 215–225.

Early, E. A.

D. W. Allen, G. P. Eppeldauer, S. W. Brown, E. A. Early, B. C. Johnson, K. R. Lykke, “Calibration and characterization of trap detector filter radiometers,” in Earth Observing Systems VIII, W. L. Barnes, ed., Proc. SPIE5151, 471–479 (2003).
[CrossRef]

Eppeldauer, G.

G. Eppeldauer, “Spectral response based calibration method of tristimulus colorimeters,” J. Res. Natl. Inst. Stand. Technol. 103, 615 (1998).
[CrossRef]

Eppeldauer, G. P.

G. P. Eppeldauer, S. W. Brown, T. C. Larason, M. Racz, K. R. Lykke, “Realization of a spectral radiance responsivity scale with a laser-based source and Si radiance meters,” Metrologia 37, 531–534 (2000).
[CrossRef]

G. P. Eppeldauer, D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap Si-radiometer,” J. Res. Natl. Inst. Stand. Technol. 105, 813–828 (2000).
[CrossRef]

D. W. Allen, G. P. Eppeldauer, S. W. Brown, E. A. Early, B. C. Johnson, K. R. Lykke, “Calibration and characterization of trap detector filter radiometers,” in Earth Observing Systems VIII, W. L. Barnes, ed., Proc. SPIE5151, 471–479 (2003).
[CrossRef]

G. P. Eppeldauer, S. W. Brown, C. C. Miller, K.R. Lykke, “Improved accuracy photometric and tristimulus-color scales based on spectral irradiance responsivity,” in Proceedings of the Twenty-Fifth Session of the CIE (Central Bureau of the CIE, Vienna, 2003), Vol. 1, pp. D2-30–D2-33.

Gentile, T. R.

Houston, J. M.

Johnson, B. C.

D. W. Allen, G. P. Eppeldauer, S. W. Brown, E. A. Early, B. C. Johnson, K. R. Lykke, “Calibration and characterization of trap detector filter radiometers,” in Earth Observing Systems VIII, W. L. Barnes, ed., Proc. SPIE5151, 471–479 (2003).
[CrossRef]

Larason, T. C.

G. P. Eppeldauer, S. W. Brown, T. C. Larason, M. Racz, K. R. Lykke, “Realization of a spectral radiance responsivity scale with a laser-based source and Si radiance meters,” Metrologia 37, 531–534 (2000).
[CrossRef]

Lykke, K. R.

G. P. Eppeldauer, S. W. Brown, T. C. Larason, M. Racz, K. R. Lykke, “Realization of a spectral radiance responsivity scale with a laser-based source and Si radiance meters,” Metrologia 37, 531–534 (2000).
[CrossRef]

D. W. Allen, G. P. Eppeldauer, S. W. Brown, E. A. Early, B. C. Johnson, K. R. Lykke, “Calibration and characterization of trap detector filter radiometers,” in Earth Observing Systems VIII, W. L. Barnes, ed., Proc. SPIE5151, 471–479 (2003).
[CrossRef]

Lykke, K.R.

G. P. Eppeldauer, S. W. Brown, C. C. Miller, K.R. Lykke, “Improved accuracy photometric and tristimulus-color scales based on spectral irradiance responsivity,” in Proceedings of the Twenty-Fifth Session of the CIE (Central Bureau of the CIE, Vienna, 2003), Vol. 1, pp. D2-30–D2-33.

Lynch, D. C.

G. P. Eppeldauer, D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap Si-radiometer,” J. Res. Natl. Inst. Stand. Technol. 105, 813–828 (2000).
[CrossRef]

Makai, J. P.

J. P. Makai, G. Czibula, J. Schanda, “The importance of the spectral responsivity correction in case of photoelectrical elements,” in Proceedings of the International Measurement Confederation (IMEKO) 11th International Symposium of the Technical Committee on Photon Detectors (IMEKO Secretariat, Budapest) (1984), pp. 215–225.

Miller, C. C.

G. P. Eppeldauer, S. W. Brown, C. C. Miller, K.R. Lykke, “Improved accuracy photometric and tristimulus-color scales based on spectral irradiance responsivity,” in Proceedings of the Twenty-Fifth Session of the CIE (Central Bureau of the CIE, Vienna, 2003), Vol. 1, pp. D2-30–D2-33.

Racz, M.

G. P. Eppeldauer, S. W. Brown, T. C. Larason, M. Racz, K. R. Lykke, “Realization of a spectral radiance responsivity scale with a laser-based source and Si radiance meters,” Metrologia 37, 531–534 (2000).
[CrossRef]

Schanda, J.

J. P. Makai, G. Czibula, J. Schanda, “The importance of the spectral responsivity correction in case of photoelectrical elements,” in Proceedings of the International Measurement Confederation (IMEKO) 11th International Symposium of the Technical Committee on Photon Detectors (IMEKO Secretariat, Budapest) (1984), pp. 215–225.

Appl. Opt. (1)

J. Res. Natl. Inst. Stand. Technol. (2)

G. P. Eppeldauer, D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap Si-radiometer,” J. Res. Natl. Inst. Stand. Technol. 105, 813–828 (2000).
[CrossRef]

G. Eppeldauer, “Spectral response based calibration method of tristimulus colorimeters,” J. Res. Natl. Inst. Stand. Technol. 103, 615 (1998).
[CrossRef]

Metrologia (1)

G. P. Eppeldauer, S. W. Brown, T. C. Larason, M. Racz, K. R. Lykke, “Realization of a spectral radiance responsivity scale with a laser-based source and Si radiance meters,” Metrologia 37, 531–534 (2000).
[CrossRef]

Other (8)

G. Czibula, “Producing a detector with predetermined spectral responsivity,” in Proceedings of the International Measurement Confederation (IMEKO) 10th International Symposium of the Technical Committee on Photon Detectors (IMEKO Secretariat, Budapest, 1982), Vol. 1, pp. 189–199.

Publication CIE No. 15.2 (Central Bureau of the CIE, Vienna, 1986).

J. P. Makai, G. Czibula, J. Schanda, “The importance of the spectral responsivity correction in case of photoelectrical elements,” in Proceedings of the International Measurement Confederation (IMEKO) 11th International Symposium of the Technical Committee on Photon Detectors (IMEKO Secretariat, Budapest) (1984), pp. 215–225.

Publication CIE No. 69 (Central Bureau of the CIE, Vienna, 1987).

All uncertainties discussed in this paper are relative expanded uncertainties with a coverage factor of two.

G. P. Eppeldauer, S. W. Brown, C. C. Miller, K.R. Lykke, “Improved accuracy photometric and tristimulus-color scales based on spectral irradiance responsivity,” in Proceedings of the Twenty-Fifth Session of the CIE (Central Bureau of the CIE, Vienna, 2003), Vol. 1, pp. D2-30–D2-33.

D. W. Allen, G. P. Eppeldauer, S. W. Brown, E. A. Early, B. C. Johnson, K. R. Lykke, “Calibration and characterization of trap detector filter radiometers,” in Earth Observing Systems VIII, W. L. Barnes, ed., Proc. SPIE5151, 471–479 (2003).
[CrossRef]

The mention of certain commercial products in this paper is for information purposes only and does not constitute an endorsement of the product by the authors or their institutions.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Beam propagation in the triangular tunnel-trap detector. The converging incident beam is focused to the aperture.

Fig. 2
Fig. 2

Construction of the triangular tunnel-trap detector. The aperture is drawn to be semitransparent in the figure.

Fig. 3
Fig. 3

Filter wheel between the aperture and the trap detector. The outside edge of the aperture can be seen where the incident beam from a baffled point source overfills the aperture.

Fig. 4
Fig. 4

Picture of the photometer-colorimeter equipped with a radiance-luminance measuring tube.

Fig. 5
Fig. 5

FOV design of radiance-luminance measurement.

Fig. 6
Fig. 6

Baffle (B1, B2) arrangement inside the radiance-luminance tube and FOV and out-of-FOV rays of an extended source measurement.

Fig. 7
Fig. 7

Nonuniformity of spatial responsivity of the tunnel trap detector. The 0.05% contours are shown at a wavelength of 500 nm. The detector was moved by 0.5-mm/step increments, and the beam spot diameter was 1.1 mm.

Fig. 8
Fig. 8

Normalized angular responsivities of the tunnel-trap detector when equipped with a 3.5-mm diameter aperture. The expected (cosine) responsivity is shown as well.

Fig. 9
Fig. 9

Point-spread response of the radiance measuring trap detector on both linear and logarithmic scales.

Fig. 10
Fig. 10

Absolute responsivities of the realized tristimulus channels. Spectral responsivity on (a) a linear scale and (b) a logarithmic scale.

Fig. 11
Fig. 11

CIE x¯(λ), y¯(λ), and z¯(λ) color-matching functions (solid curves) and the realized and then normalized channel responsivities (dashed curves).

Fig. 12
Fig. 12

f 1′ value dependence of the four channels as functions of the thickness change of the filter layers.

Fig. 13
Fig. 13

Transmittance differences (left Y axis) of the realized photometric channel relative to the CIE and designed (normalized) spectral transmittances. The CIE function is shown to illustrate where the significant differences are.

Tables (1)

Tables Icon

Table 1 Filter Types with Designed (Calculated) and Realized Thickness of Layers, Spectral Mismatch Values, and Maximum Transmittances for the Four Filter Combinations

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

kX1=X1IX1=Km λ Sλx¯1λdλλ SλsX1λdλ=1.06291KmFX1sX1599,kX2=X2IX2=Km λ Sλx¯2λdλλ SλsX2λdλ=0.3501KmFX2sX2442,kY=YIY=Km λ Sλy¯λd λλ SλsYλdλ=KmFYsY555,kZ=ZIZ=Km λ Sλz¯λdλλ SλsZλdλ=1.78297KmFZsZ446.
FX1=λ Sλx¯1nλdλλ SλsX1nλdλ,FX2=λ Sλx¯2nλdλλ SλsX2nλdλ,FY=λ SλVλdλλ SλsYnλdλ,FZ=λ Sλz¯nλdλλ SλsZnλdλ,
X=X1+X2, where X1=kX1IX1, X2=kX2IX2, Y=kYIY, Z=kZIZ,
Φd=LtωmAd,
Ad=d2π/4,
ωm=2π1-cosγ/2.
γ=2 tan-1D/2s=3.919°.
Ad=0.1964 cm2,ωm=0.003674 sr.
α=2 tan-1D-d2s.
β=2 tan-1D+d2s.
Snλ=1-ρexplog10Sdλ+i tilog10τimλ1-ρtim,
f1=o |s*λrel-Vλ|dλoVλdλ×100%,
s*λrel=o SλAVλdλoSλAsλreldλ sλrel,

Metrics