Abstract

Two-photon laser-induced fluorescence (LIF) imaging of atomic oxygen is investigated in premixed hydrogen and methane flames with nanosecond and picosecond pulsed lasers at 226 nm. In the hydrogen flame, the interference from photolysis is negligible compared with the LIF signal from native atomic oxygen, and the major limitations on quantitative measurements are stimulated emission and photoionization. Excitation with a nanosecond laser is advantageous in the hydrogen flames, because it reduces the effects of stimulated emission and photoionization. In the methane flames, however, photolytic interference is the major complication for quantitative O-atom measurements. A comparison of methane and hydrogen flames indicates that vibrationally excited CO2 is the dominant precursor for laser-generated atomic oxygen. In the methane flames, picosecond excitation offers a significant advantage by dramatically reducing the photolytic interference. The prospects for improved O-atom imaging in hydrogen and hydrocarbon flames are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

Corrections

Jonathan H. Frank, Xiangling Chen, Brian D. Patterson, and Thomas B. Settersten, "Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames: erratum," Appl. Opt. 43, 3356-3356 (2004)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-43-16-3356

References

  • View by:
  • |
  • |
  • |

  1. M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-photon excitation of atomic oxygen in a flame,” Opt. Commun. 42, 244–246 (1982).
    [CrossRef]
  2. J. E. M. Goldsmith, “Photochemical effects in two-photon-excited fluorescence detection of atomic oxygen in flames,” Appl. Opt. 26, 3566–3572 (1987).
    [CrossRef] [PubMed]
  3. U. Meier, J. Bittner, K. Kohse-Höinghaus, T. Just, “Discussion of two-photon laser-excited fluorescence as a method for quantitative detection of oxygen atoms in flames,” in the Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1887–1896.
  4. I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O(3p3P), O2, and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989).
    [CrossRef] [PubMed]
  5. K. C. Smyth, P. H. Tjossem, “Radical concentration measurements in hydrocarbon diffusion flames,” Appl. Phys. B 50, 499–511 (1990).
    [CrossRef]
  6. K. C. Smyth, P. H. Tjossem, “Relative H-atom and O-atom concentration measurements in a laminar methane/air diffusion flame,” in the Twenty-Third Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp. 1829–1837.
  7. L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
    [CrossRef]
  8. U. Meier, K. Kohse-Höinghaus, Th. Just, “H and O atom detection for combustion applications: study of quenching and laser photolysis effects,” Chem. Phys. Lett. 126, 567–573 (1986).
    [CrossRef]
  9. A. W. Miziolek, M. A. DeWilde, “Multiphoton photochemical and collisional effects during oxygen-atom flame detection,” Opt. Lett. 9, 390–392 (1984).
    [CrossRef] [PubMed]
  10. D. L. van Oostendorp, H. B. Levinsky, C. E. van der Meji, R. A. A. M. Jacobs, W. T. A. Borghols, “Avoidance of the photochemical production of oxygen atoms in one-dimensional, two-photon laser-induced fluorescence imaging,” Appl. Opt. 32, 4636–4640 (1993).
    [CrossRef] [PubMed]
  11. T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479–482 (2003).
    [CrossRef]
  12. M. Aldén, U. Westblom, J. E. M. Goldsmith, “Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases,” Opt. Lett. 14, 305–307 (1989).
    [CrossRef] [PubMed]
  13. M. Aldén, H. M. Hertz, S. Svanberg, S. Wallin, “Imaging laser-induced fluorescence of oxygen atoms in a flame,” Appl. Opt 23, 3255–3257 (1984).
    [CrossRef] [PubMed]
  14. R. J. Kee, J. F. Grear, M. D. Smooke, J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85–8240 (Sandia National Laboratories, Livermore, Calif., 1985).
  15. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, “GRI-Mech 3.0 Home Page,” http://www.me.berkeley.edu/gri_mech/(1999) .
  16. R. A. Yetter, F. L. Dryer, H. Rabitz, “A comprehensive reaction-mechanism for carbon-monoxide hydrogen oxygen kinetics,” Combust. Sci. Technol. 79, 97–128 (1991).
    [CrossRef]
  17. M. E. Riley, “Growth of parametric fields in (2 + 1)-photon laser ionization of atomic oxygen,” Phys. Rev A 41, 4843–4856 (1990).
    [CrossRef] [PubMed]
  18. F. Ossler, J. Larsson, M. Aldén, “Measurements of the effective lifetime of O atoms in atmospheric premixed flames,” Chem. Phys. Lett. 250, 287–292 (1996).
    [CrossRef]
  19. D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).
    [CrossRef] [PubMed]
  20. C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
    [CrossRef]
  21. N. Georgiev, M. Aldén, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
    [CrossRef]

2003 (1)

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479–482 (2003).
[CrossRef]

2002 (1)

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

1997 (2)

N. Georgiev, M. Aldén, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
[CrossRef]

L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
[CrossRef]

1996 (1)

F. Ossler, J. Larsson, M. Aldén, “Measurements of the effective lifetime of O atoms in atmospheric premixed flames,” Chem. Phys. Lett. 250, 287–292 (1996).
[CrossRef]

1993 (1)

1991 (1)

R. A. Yetter, F. L. Dryer, H. Rabitz, “A comprehensive reaction-mechanism for carbon-monoxide hydrogen oxygen kinetics,” Combust. Sci. Technol. 79, 97–128 (1991).
[CrossRef]

1990 (2)

M. E. Riley, “Growth of parametric fields in (2 + 1)-photon laser ionization of atomic oxygen,” Phys. Rev A 41, 4843–4856 (1990).
[CrossRef] [PubMed]

K. C. Smyth, P. H. Tjossem, “Radical concentration measurements in hydrocarbon diffusion flames,” Appl. Phys. B 50, 499–511 (1990).
[CrossRef]

1989 (2)

1987 (1)

1986 (2)

U. Meier, K. Kohse-Höinghaus, Th. Just, “H and O atom detection for combustion applications: study of quenching and laser photolysis effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

1984 (2)

A. W. Miziolek, M. A. DeWilde, “Multiphoton photochemical and collisional effects during oxygen-atom flame detection,” Opt. Lett. 9, 390–392 (1984).
[CrossRef] [PubMed]

M. Aldén, H. M. Hertz, S. Svanberg, S. Wallin, “Imaging laser-induced fluorescence of oxygen atoms in a flame,” Appl. Opt 23, 3255–3257 (1984).
[CrossRef] [PubMed]

1982 (1)

M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-photon excitation of atomic oxygen in a flame,” Opt. Commun. 42, 244–246 (1982).
[CrossRef]

Aldén, M.

N. Georgiev, M. Aldén, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
[CrossRef]

F. Ossler, J. Larsson, M. Aldén, “Measurements of the effective lifetime of O atoms in atmospheric premixed flames,” Chem. Phys. Lett. 250, 287–292 (1996).
[CrossRef]

M. Aldén, U. Westblom, J. E. M. Goldsmith, “Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases,” Opt. Lett. 14, 305–307 (1989).
[CrossRef] [PubMed]

M. Aldén, H. M. Hertz, S. Svanberg, S. Wallin, “Imaging laser-induced fluorescence of oxygen atoms in a flame,” Appl. Opt 23, 3255–3257 (1984).
[CrossRef] [PubMed]

M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-photon excitation of atomic oxygen in a flame,” Opt. Commun. 42, 244–246 (1982).
[CrossRef]

Bamford, D. J.

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

Bischel, W. K.

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

Bittner, J.

U. Meier, J. Bittner, K. Kohse-Höinghaus, T. Just, “Discussion of two-photon laser-excited fluorescence as a method for quantitative detection of oxygen atoms in flames,” in the Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1887–1896.

Borghols, W. T. A.

Crosley, D. R.

Davidson, D. F.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

Desgroux, P.

L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
[CrossRef]

DeWilde, M. A.

Dreizler, A.

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479–482 (2003).
[CrossRef]

Dryer, F. L.

R. A. Yetter, F. L. Dryer, H. Rabitz, “A comprehensive reaction-mechanism for carbon-monoxide hydrogen oxygen kinetics,” Combust. Sci. Technol. 79, 97–128 (1991).
[CrossRef]

Edner, H.

M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-photon excitation of atomic oxygen in a flame,” Opt. Commun. 42, 244–246 (1982).
[CrossRef]

Farrow, R. L.

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479–482 (2003).
[CrossRef]

Gasnot, L.

L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
[CrossRef]

Georgiev, N.

Goldsmith, J. E. M.

Grafström, P.

M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-photon excitation of atomic oxygen in a flame,” Opt. Commun. 42, 244–246 (1982).
[CrossRef]

Grear, J. F.

R. J. Kee, J. F. Grear, M. D. Smooke, J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85–8240 (Sandia National Laboratories, Livermore, Calif., 1985).

Hanson, R. K.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

Hertz, H. M.

M. Aldén, H. M. Hertz, S. Svanberg, S. Wallin, “Imaging laser-induced fluorescence of oxygen atoms in a flame,” Appl. Opt 23, 3255–3257 (1984).
[CrossRef] [PubMed]

Jacobs, R. A. A. M.

Jeffries, J. B.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O(3p3P), O2, and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989).
[CrossRef] [PubMed]

Jusinski, L. E.

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

Just, T.

U. Meier, J. Bittner, K. Kohse-Höinghaus, T. Just, “Discussion of two-photon laser-excited fluorescence as a method for quantitative detection of oxygen atoms in flames,” in the Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1887–1896.

Just, Th.

U. Meier, K. Kohse-Höinghaus, Th. Just, “H and O atom detection for combustion applications: study of quenching and laser photolysis effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

Kee, R. J.

R. J. Kee, J. F. Grear, M. D. Smooke, J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85–8240 (Sandia National Laboratories, Livermore, Calif., 1985).

Koch, J. D.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

Kohse-Höinghaus, K.

U. Meier, K. Kohse-Höinghaus, Th. Just, “H and O atom detection for combustion applications: study of quenching and laser photolysis effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

U. Meier, J. Bittner, K. Kohse-Höinghaus, T. Just, “Discussion of two-photon laser-excited fluorescence as a method for quantitative detection of oxygen atoms in flames,” in the Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1887–1896.

Larsson, J.

F. Ossler, J. Larsson, M. Aldén, “Measurements of the effective lifetime of O atoms in atmospheric premixed flames,” Chem. Phys. Lett. 250, 287–292 (1996).
[CrossRef]

Levinsky, H. B.

Meier, U.

U. Meier, K. Kohse-Höinghaus, Th. Just, “H and O atom detection for combustion applications: study of quenching and laser photolysis effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

U. Meier, J. Bittner, K. Kohse-Höinghaus, T. Just, “Discussion of two-photon laser-excited fluorescence as a method for quantitative detection of oxygen atoms in flames,” in the Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1887–1896.

Miller, J. A.

R. J. Kee, J. F. Grear, M. D. Smooke, J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85–8240 (Sandia National Laboratories, Livermore, Calif., 1985).

Miziolek, A. W.

Ossler, F.

F. Ossler, J. Larsson, M. Aldén, “Measurements of the effective lifetime of O atoms in atmospheric premixed flames,” Chem. Phys. Lett. 250, 287–292 (1996).
[CrossRef]

Patterson, B. D.

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479–482 (2003).
[CrossRef]

Pauwels, J. F.

L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
[CrossRef]

Rabitz, H.

R. A. Yetter, F. L. Dryer, H. Rabitz, “A comprehensive reaction-mechanism for carbon-monoxide hydrogen oxygen kinetics,” Combust. Sci. Technol. 79, 97–128 (1991).
[CrossRef]

Riley, M. E.

M. E. Riley, “Growth of parametric fields in (2 + 1)-photon laser ionization of atomic oxygen,” Phys. Rev A 41, 4843–4856 (1990).
[CrossRef] [PubMed]

Schrader, P. E.

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479–482 (2003).
[CrossRef]

Schulz, C.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

Settersten, T. B.

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479–482 (2003).
[CrossRef]

Smooke, M. D.

R. J. Kee, J. F. Grear, M. D. Smooke, J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85–8240 (Sandia National Laboratories, Livermore, Calif., 1985).

Smyth, K. C.

K. C. Smyth, P. H. Tjossem, “Radical concentration measurements in hydrocarbon diffusion flames,” Appl. Phys. B 50, 499–511 (1990).
[CrossRef]

K. C. Smyth, P. H. Tjossem, “Relative H-atom and O-atom concentration measurements in a laminar methane/air diffusion flame,” in the Twenty-Third Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp. 1829–1837.

Sochet, L. R.

L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
[CrossRef]

Svanberg, S.

M. Aldén, H. M. Hertz, S. Svanberg, S. Wallin, “Imaging laser-induced fluorescence of oxygen atoms in a flame,” Appl. Opt 23, 3255–3257 (1984).
[CrossRef] [PubMed]

M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-photon excitation of atomic oxygen in a flame,” Opt. Commun. 42, 244–246 (1982).
[CrossRef]

Tjossem, P. H.

K. C. Smyth, P. H. Tjossem, “Radical concentration measurements in hydrocarbon diffusion flames,” Appl. Phys. B 50, 499–511 (1990).
[CrossRef]

K. C. Smyth, P. H. Tjossem, “Relative H-atom and O-atom concentration measurements in a laminar methane/air diffusion flame,” in the Twenty-Third Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp. 1829–1837.

van der Meji, C. E.

van Oostendorp, D. L.

Wallin, S.

M. Aldén, H. M. Hertz, S. Svanberg, S. Wallin, “Imaging laser-induced fluorescence of oxygen atoms in a flame,” Appl. Opt 23, 3255–3257 (1984).
[CrossRef] [PubMed]

Westblom, U.

Wysong, I. J.

Yetter, R. A.

R. A. Yetter, F. L. Dryer, H. Rabitz, “A comprehensive reaction-mechanism for carbon-monoxide hydrogen oxygen kinetics,” Combust. Sci. Technol. 79, 97–128 (1991).
[CrossRef]

Appl. Opt (1)

M. Aldén, H. M. Hertz, S. Svanberg, S. Wallin, “Imaging laser-induced fluorescence of oxygen atoms in a flame,” Appl. Opt 23, 3255–3257 (1984).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (3)

K. C. Smyth, P. H. Tjossem, “Radical concentration measurements in hydrocarbon diffusion flames,” Appl. Phys. B 50, 499–511 (1990).
[CrossRef]

L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997).
[CrossRef]

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479–482 (2003).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (3)

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

F. Ossler, J. Larsson, M. Aldén, “Measurements of the effective lifetime of O atoms in atmospheric premixed flames,” Chem. Phys. Lett. 250, 287–292 (1996).
[CrossRef]

U. Meier, K. Kohse-Höinghaus, Th. Just, “H and O atom detection for combustion applications: study of quenching and laser photolysis effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

Combust. Sci. Technol. (1)

R. A. Yetter, F. L. Dryer, H. Rabitz, “A comprehensive reaction-mechanism for carbon-monoxide hydrogen oxygen kinetics,” Combust. Sci. Technol. 79, 97–128 (1991).
[CrossRef]

Opt. Commun. (1)

M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-photon excitation of atomic oxygen in a flame,” Opt. Commun. 42, 244–246 (1982).
[CrossRef]

Opt. Lett. (3)

Phys. Rev A (1)

M. E. Riley, “Growth of parametric fields in (2 + 1)-photon laser ionization of atomic oxygen,” Phys. Rev A 41, 4843–4856 (1990).
[CrossRef] [PubMed]

Phys. Rev. A (1)

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

Other (4)

R. J. Kee, J. F. Grear, M. D. Smooke, J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85–8240 (Sandia National Laboratories, Livermore, Calif., 1985).

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, “GRI-Mech 3.0 Home Page,” http://www.me.berkeley.edu/gri_mech/(1999) .

K. C. Smyth, P. H. Tjossem, “Relative H-atom and O-atom concentration measurements in a laminar methane/air diffusion flame,” in the Twenty-Third Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp. 1829–1837.

U. Meier, J. Bittner, K. Kohse-Höinghaus, T. Just, “Discussion of two-photon laser-excited fluorescence as a method for quantitative detection of oxygen atoms in flames,” in the Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1887–1896.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental arrangement for nanosecond and picosecond excitation of O-atom LIF. Each laser can be used independently for O-atom LIF, or they can be used in a pump-probe configuration. In the latter case, the nanosecond laser is tuned off resonance, and the photolytically produced atomic oxygen is probed by two-photon LIF with the picosecond laser. GDL, grating dye laser; HG, harmonic generation; ML, mode-locked laser; Regen, regenerative amplifier; DFDL, amplified distributed-feedback dye laser; WM, wavemeter; JM, joulemeter; BP, beam profiler; DG, delay generator; IF, interference filter; CL, camera lens; ICCD, intensified charge-coupled device camera.

Fig. 2
Fig. 2

Peak-normalized radial profiles of O-atom LIF in a lean (ϕ = 0.25) premixed H2/O2 flame obtained with nanosecond excitation at four laser energies.

Fig. 3
Fig. 3

Peak-normalized radial profiles of O-atom LIF in a lean (ϕ = 0.25) premixed H2/O2 flame obtained with picosecond excitation at five laser energies.

Fig. 4
Fig. 4

Comparison of O-atom LIF signal and stimulated emission (SE) obtained with nanosecond and picosecond excitation in the H2/O2 flame. Experimental data for the picosecond laser are shown as triangles and nanosecond data are shown as circles. Solid lines indicate quadratic dependence on laser fluence, and dotted curves are spline fits to the SE data. LIF signals for the picosecond and nanosecond lasers have independent scales.

Fig. 5
Fig. 5

Peak-normalized radial profiles of O-atom LIF in a lean (ϕ = 0.70) premixed CH4/O2/N2 flame obtained with picosecond excitation at three pulse energies.

Fig. 6
Fig. 6

Peak-normalized radial profiles of O-atom LIF in a lean (ϕ = 0.70) premixed CH4/O2/N2 flame obtained with nanosecond excitation at five laser energies. The picosecond laser LIF profile represents an interference-free O-atom measurement.

Fig. 7
Fig. 7

(a) Radial profiles of O-atom LIF from photolytically produced O atoms in a lean (ϕ = 0.70) premixed CH4/O2/N2 flame at four nanosecond laser energies. For comparison, a LIF profile measured with the picosecond laser is displayed on the same scale. (b) Laser fluence dependence of LIF from photolytically produced O atoms in a lean (ϕ = 0.70) premixed CH4/O2/N2 flame. The solid line indicates a linear dependence on laser fluence.

Fig. 8
Fig. 8

Comparison of O-atom LIF signal and stimulated emission (SE) obtained with nanosecond and picosecond excitation in a lean (ϕ = 0.70) premixed CH4/O2/N2 flame. Experimental data for picosecond and nanosecond excitation are shown as triangles and circles, respectively. The solid lines indicate quadratic dependence on laser fluence and the dotted curves are spline fits to the SE data.

Fig. 9
Fig. 9

Peak-normalized radial profiles of O-atom LIF in a lean (ϕ = 0.70) premixed CH4/O2/N2/CO2 flame obtained with picosecond excitation at three laser energies.

Fig. 10
Fig. 10

Peak-normalized radial profiles of O-atom LIF in a lean (ϕ = 0.70) premixed CH4/O2/N2/CO2 flame obtained with nanosecond excitation at four laser energies. The picosecond laser LIF profile represents an interference-free O-atom measurement.

Fig. 11
Fig. 11

(a) Radial profiles of LIF from photolytically produced O atoms in a lean (ϕ = 0.70) premixed CH4/O2/N2/CO2 flame. For comparison, a LIF profile measured with the picosecond laser is displayed on the same scale. (b) Laser fluence dependence of LIF from photolytically produced O atoms in a lean (ϕ = 0.70) premixed CH4/O2/N2/CO2 flame. The solid line indicates a linear dependence on laser fluence.

Fig. 12
Fig. 12

Two-dimensional measurement of O-atom LIF in a lean (ϕ = 0.70) premixed CH4/O2/N2 flame with picosecond laser excitation.

Tables (1)

Tables Icon

Table 1 Flame Parameters

Metrics