Abstract

The penetration depth in water was measured for Er:YAG laser light in a high density relevant to clinical applications. Various types of focusing elements were used to guide the light efficiently. We found that the transmission distance depended strongly on the beam shape in the water. When we used a plano-convex type of focusing cap, the penetration depth was larger than that when a dome- or ball-type cap were used.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Awazu, “Medical applications of infrared lasers,” Rev. Laser Eng. 28, 291–297 (2000) (in Japanese).
    [CrossRef]
  2. J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
    [CrossRef] [PubMed]
  3. K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
    [CrossRef]
  4. K. Iwai, Y. W. Shi, K. Nito, Y. Matsuura, T. Kasai, M. Miyagi, S. Saito, Y. Arai, N. Ioritani, Y. Okagami, M. Nemec, J. Sulc, H. Jelinkova, M. Zavoral, O. Kohler, P. Drlik, “Erbium:YAG laser lithotripsy by use of a flexible hollow waveguide with an end-sealing cap,” Appl. Opt. 42, 2431–2435 (2003).
    [CrossRef] [PubMed]
  5. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  6. J. P. Cummings, J. T. Walsh, “Erbium laser ablation: the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993).
    [CrossRef]
  7. R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7, 959–970 (2001).
    [CrossRef]
  8. B. Majaron, T. Prosen, D. Sustercic, M. Lukac, “Fiber-tip drilling of hard dental tissues with Er:YAG laser,” in Laser in Dentistry IV, J. D. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 69–76 (1998).
    [CrossRef]
  9. H. Pratiso, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
    [CrossRef]
  10. M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, H. P. Weber, “Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation,” Appl. Phys. B 59, 621–629 (1994).
    [CrossRef]
  11. C. P. Lin, D. Stern, C. A. Puliafito, “High-speed photography of Er:YAG laser ablation in fluid,” Invest. Ophthalmol. Visual Sci. 31, 2546–2550 (1990).
  12. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  13. Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, H. Uyama, “Cyclic olefin polymer-coated silver hollow glass waveguides for the Infrared,” Appl. Opt. 37, 7758–7762 (1998).
    [CrossRef]
  14. M. Miyagi, Y. Matsuura, Y. Abe, “Sealing-cap for hollow fiber terminal,” Japanese patent2000-219907 (21July2000).
  15. S. Mohri, T. Kasai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, “Optical properties of end-sealed hollow fibers,” Appl. Opt. 41, 1251–1255 (2002).
    [CrossRef] [PubMed]

2003

2002

2001

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7, 959–970 (2001).
[CrossRef]

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

2000

K. Awazu, “Medical applications of infrared lasers,” Rev. Laser Eng. 28, 291–297 (2000) (in Japanese).
[CrossRef]

1998

1995

H. Pratiso, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
[CrossRef]

1994

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, H. P. Weber, “Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation,” Appl. Phys. B 59, 621–629 (1994).
[CrossRef]

1993

J. P. Cummings, J. T. Walsh, “Erbium laser ablation: the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993).
[CrossRef]

1990

C. P. Lin, D. Stern, C. A. Puliafito, “High-speed photography of Er:YAG laser ablation in fluid,” Invest. Ophthalmol. Visual Sci. 31, 2546–2550 (1990).

1984

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1973

Abe, Y.

Altermatt, H. J.

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, H. P. Weber, “Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation,” Appl. Phys. B 59, 621–629 (1994).
[CrossRef]

Arai, Y.

Awazu, K.

K. Awazu, “Medical applications of infrared lasers,” Rev. Laser Eng. 28, 291–297 (2000) (in Japanese).
[CrossRef]

Cecconi, P. P.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Chan, K. F.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Choi, B.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Corbin, N. S.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Cummings, J. P.

J. P. Cummings, J. T. Walsh, “Erbium laser ablation: the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993).
[CrossRef]

Drlik, P.

Frenz, M.

H. Pratiso, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
[CrossRef]

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, H. P. Weber, “Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation,” Appl. Phys. B 59, 621–629 (1994).
[CrossRef]

Fried, D.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7, 959–970 (2001).
[CrossRef]

Glickman, R. D.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Hale, G. M.

Hammer, D. X.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Ioritani, N.

Ith, M.

H. Pratiso, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
[CrossRef]

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, H. P. Weber, “Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation,” Appl. Phys. B 59, 621–629 (1994).
[CrossRef]

Iwai, K.

Jansen, E. D.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Jelinkova, H.

Kamerer, A. D.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Kasai, T.

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Kohler, O.

Lin, C. P.

C. P. Lin, D. Stern, C. A. Puliafito, “High-speed photography of Er:YAG laser ablation in fluid,” Invest. Ophthalmol. Visual Sci. 31, 2546–2550 (1990).

Lukac, M.

B. Majaron, T. Prosen, D. Sustercic, M. Lukac, “Fiber-tip drilling of hard dental tissues with Er:YAG laser,” in Laser in Dentistry IV, J. D. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 69–76 (1998).
[CrossRef]

Majaron, B.

B. Majaron, T. Prosen, D. Sustercic, M. Lukac, “Fiber-tip drilling of hard dental tissues with Er:YAG laser,” in Laser in Dentistry IV, J. D. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 69–76 (1998).
[CrossRef]

Matsuura, Y.

Miyagi, M.

Mohri, S.

Nemec, M.

Nito, K.

Okagami, Y.

Pfefer, T. J.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Pratiso, H.

H. Pratiso, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
[CrossRef]

Pratisto, H.

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, H. P. Weber, “Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation,” Appl. Phys. B 59, 621–629 (1994).
[CrossRef]

Prosen, T.

B. Majaron, T. Prosen, D. Sustercic, M. Lukac, “Fiber-tip drilling of hard dental tissues with Er:YAG laser,” in Laser in Dentistry IV, J. D. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 69–76 (1998).
[CrossRef]

Puliafito, C. A.

C. P. Lin, D. Stern, C. A. Puliafito, “High-speed photography of Er:YAG laser ablation in fluid,” Invest. Ophthalmol. Visual Sci. 31, 2546–2550 (1990).

Querry, M. R.

Saito, S.

Sato, S.

Shi, Y. W.

Shori, R. K.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7, 959–970 (2001).
[CrossRef]

Sorg, B.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Stafsudd, O. M.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7, 959–970 (2001).
[CrossRef]

Stern, D.

C. P. Lin, D. Stern, C. A. Puliafito, “High-speed photography of Er:YAG laser ablation in fluid,” Invest. Ophthalmol. Visual Sci. 31, 2546–2550 (1990).

Sulc, J.

Sustercic, D.

B. Majaron, T. Prosen, D. Sustercic, M. Lukac, “Fiber-tip drilling of hard dental tissues with Er:YAG laser,” in Laser in Dentistry IV, J. D. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 69–76 (1998).
[CrossRef]

Taniwaki, M.

Teichman, J. M. H.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Uyama, H.

Vargas, G.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Walsh, J. T.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7, 959–970 (2001).
[CrossRef]

J. P. Cummings, J. T. Walsh, “Erbium laser ablation: the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993).
[CrossRef]

Walston, A. A.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7, 959–970 (2001).
[CrossRef]

Wang, Y.

Weber, H. P.

H. Pratiso, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
[CrossRef]

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, H. P. Weber, “Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation,” Appl. Phys. B 59, 621–629 (1994).
[CrossRef]

Welch, A. J.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Zavoral, M.

Appl. Opt.

Appl. Phys. B

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, H. P. Weber, “Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation,” Appl. Phys. B 59, 621–629 (1994).
[CrossRef]

Appl. Phys. Lett.

J. P. Cummings, J. T. Walsh, “Erbium laser ablation: the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993).
[CrossRef]

H. Pratiso, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing a surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ = 2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7, 959–970 (2001).
[CrossRef]

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

C. P. Lin, D. Stern, C. A. Puliafito, “High-speed photography of Er:YAG laser ablation in fluid,” Invest. Ophthalmol. Visual Sci. 31, 2546–2550 (1990).

J. Lightwave Technol.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Urol.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Rev. Laser Eng.

K. Awazu, “Medical applications of infrared lasers,” Rev. Laser Eng. 28, 291–297 (2000) (in Japanese).
[CrossRef]

Other

B. Majaron, T. Prosen, D. Sustercic, M. Lukac, “Fiber-tip drilling of hard dental tissues with Er:YAG laser,” in Laser in Dentistry IV, J. D. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 69–76 (1998).
[CrossRef]

M. Miyagi, Y. Matsuura, Y. Abe, “Sealing-cap for hollow fiber terminal,” Japanese patent2000-219907 (21July2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Silica-glass sealing caps with various output geometries.

Fig. 2
Fig. 2

Burn patterns of Er:YAG laser light obtained in air using various end-sealing caps. (a) dome-, (b) plano-convex-, and (c) ball-shaped caps. Distance z was measured from the center of the outer surface of the sealing caps.

Fig. 3
Fig. 3

Focusing effect of Er:YAG laser light in water for various caps. (a) dome-, (b) plano-convex-, and (c) ball-shaped caps. The output energy was 160 mJ, and the repetition rate was 5 Hz.

Fig. 4
Fig. 4

Schematic view of Er:YAG laser light delivery system in water.

Fig. 5
Fig. 5

Transmission properties of Er:YAG laser light in water, where the output energy density from the cap was 13 J/cm2 and the repetition rate was 5 Hz.

Fig. 6
Fig. 6

Penetration depth of the Er:YAG laser light in water as a function of energy and pulse repetition rate.

Tables (1)

Tables Icon

Table 1 Characteristics of Caps with Various Output Geometries

Metrics