Abstract

A spiral phase retarder ϕ(r, θ) = mθ has been constructed with use of a deformed cracked plexiglass plate. By changing the degree of deformation, the retarder can be adjusted for use at any wavelength, and the value of the phase step 2πm at θ = 2π can be chosen.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Padgett, L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41, 275–285 (2000).
    [CrossRef]
  2. J. Courtal, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett, “Measurement of the rotational frequency shift imparted to a light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1999).
    [CrossRef]
  3. T. Carmon, R. Uzdin, C. Pigier, Z. Musslimani, M. Segev, A. Nepomnyashchy, “Rotating propeller solitons,” Phys. Rev. Lett. 87, 143901–143904 (2001).
    [CrossRef] [PubMed]
  4. K. G. Larkin, D. J. Bone, M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1862–1870 (2001).
    [CrossRef]
  5. K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns. II. Stationary-phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1871–1881 (2001).
    [CrossRef]
  6. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London) 412, 313–316 (2001).
    [CrossRef]
  7. E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 203901–203904 (2003).
    [CrossRef] [PubMed]
  8. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wave-front laser-beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
    [CrossRef]
  9. R. Oren, N. Davidson, A. A. Friesem, E. Hasman, “Continuous-phase elements can improve laser beam quality,” Opt. Lett. 25, 939–941 (2000).
    [CrossRef]
  10. N. R. Heckenberg, R. McDuff, C. P. Smith, A. G. White, “Generation of optical-phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
    [CrossRef] [PubMed]
  11. J. E. Curtis, D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28, 872–874 (2003).
    [CrossRef] [PubMed]
  12. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
    [CrossRef]
  13. M. Harris, C. A. Hill, J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106, 161–166 (1994).
    [CrossRef]

2003 (2)

E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 203901–203904 (2003).
[CrossRef] [PubMed]

J. E. Curtis, D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28, 872–874 (2003).
[CrossRef] [PubMed]

2001 (4)

T. Carmon, R. Uzdin, C. Pigier, Z. Musslimani, M. Segev, A. Nepomnyashchy, “Rotating propeller solitons,” Phys. Rev. Lett. 87, 143901–143904 (2001).
[CrossRef] [PubMed]

K. G. Larkin, D. J. Bone, M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1862–1870 (2001).
[CrossRef]

K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns. II. Stationary-phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1871–1881 (2001).
[CrossRef]

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London) 412, 313–316 (2001).
[CrossRef]

2000 (2)

1999 (1)

J. Courtal, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett, “Measurement of the rotational frequency shift imparted to a light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1999).
[CrossRef]

1994 (2)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wave-front laser-beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

M. Harris, C. A. Hill, J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106, 161–166 (1994).
[CrossRef]

1993 (1)

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

1992 (1)

Allen, L.

M. Padgett, L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41, 275–285 (2000).
[CrossRef]

J. Courtal, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett, “Measurement of the rotational frequency shift imparted to a light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1999).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wave-front laser-beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Bone, D. J.

Carmon, T.

T. Carmon, R. Uzdin, C. Pigier, Z. Musslimani, M. Segev, A. Nepomnyashchy, “Rotating propeller solitons,” Phys. Rev. Lett. 87, 143901–143904 (2001).
[CrossRef] [PubMed]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wave-front laser-beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

Courtal, J.

J. Courtal, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett, “Measurement of the rotational frequency shift imparted to a light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1999).
[CrossRef]

Crawford, P. R.

E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 203901–203904 (2003).
[CrossRef] [PubMed]

Curtis, J. E.

Davidson, N.

Dholakia, K.

J. Courtal, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett, “Measurement of the rotational frequency shift imparted to a light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1999).
[CrossRef]

Friesem, A. A.

Galvez, E. J.

E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 203901–203904 (2003).
[CrossRef] [PubMed]

Grier, D. G.

Haglin, P. J.

E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 203901–203904 (2003).
[CrossRef] [PubMed]

Harris, M.

M. Harris, C. A. Hill, J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106, 161–166 (1994).
[CrossRef]

Hasman, E.

Heckenberg, N. R.

Hill, C. A.

M. Harris, C. A. Hill, J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106, 161–166 (1994).
[CrossRef]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wave-front laser-beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

Larkin, K. G.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London) 412, 313–316 (2001).
[CrossRef]

McDuff, R.

Musslimani, Z.

T. Carmon, R. Uzdin, C. Pigier, Z. Musslimani, M. Segev, A. Nepomnyashchy, “Rotating propeller solitons,” Phys. Rev. Lett. 87, 143901–143904 (2001).
[CrossRef] [PubMed]

Nepomnyashchy, A.

T. Carmon, R. Uzdin, C. Pigier, Z. Musslimani, M. Segev, A. Nepomnyashchy, “Rotating propeller solitons,” Phys. Rev. Lett. 87, 143901–143904 (2001).
[CrossRef] [PubMed]

Oldfield, M. A.

Oren, R.

Padgett, M.

M. Padgett, L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41, 275–285 (2000).
[CrossRef]

Padgett, M. J.

J. Courtal, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett, “Measurement of the rotational frequency shift imparted to a light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1999).
[CrossRef]

Pigier, C.

T. Carmon, R. Uzdin, C. Pigier, Z. Musslimani, M. Segev, A. Nepomnyashchy, “Rotating propeller solitons,” Phys. Rev. Lett. 87, 143901–143904 (2001).
[CrossRef] [PubMed]

Pysher, M. J.

E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 203901–203904 (2003).
[CrossRef] [PubMed]

Robertson, D. A.

J. Courtal, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett, “Measurement of the rotational frequency shift imparted to a light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1999).
[CrossRef]

Segev, M.

T. Carmon, R. Uzdin, C. Pigier, Z. Musslimani, M. Segev, A. Nepomnyashchy, “Rotating propeller solitons,” Phys. Rev. Lett. 87, 143901–143904 (2001).
[CrossRef] [PubMed]

Smith, C. P.

Sztul, H. I.

E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 203901–203904 (2003).
[CrossRef] [PubMed]

Uzdin, R.

T. Carmon, R. Uzdin, C. Pigier, Z. Musslimani, M. Segev, A. Nepomnyashchy, “Rotating propeller solitons,” Phys. Rev. Lett. 87, 143901–143904 (2001).
[CrossRef] [PubMed]

van der Veen, H. E. L. O.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Vaughan, J. M.

M. Harris, C. A. Hill, J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106, 161–166 (1994).
[CrossRef]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London) 412, 313–316 (2001).
[CrossRef]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London) 412, 313–316 (2001).
[CrossRef]

White, A. G.

Williams, R. E.

E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 203901–203904 (2003).
[CrossRef] [PubMed]

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wave-front laser-beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London) 412, 313–316 (2001).
[CrossRef]

Contemp. Phys. (1)

M. Padgett, L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41, 275–285 (2000).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nature (London) (1)

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London) 412, 313–316 (2001).
[CrossRef]

Opt. Commun. (3)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wave-front laser-beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

M. Harris, C. A. Hill, J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106, 161–166 (1994).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (3)

E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 203901–203904 (2003).
[CrossRef] [PubMed]

J. Courtal, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett, “Measurement of the rotational frequency shift imparted to a light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1999).
[CrossRef]

T. Carmon, R. Uzdin, C. Pigier, Z. Musslimani, M. Segev, A. Nepomnyashchy, “Rotating propeller solitons,” Phys. Rev. Lett. 87, 143901–143904 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Construction of the spiral phase plate.

Fig. 2
Fig. 2

Sagnac interferometer used for the investigation. L1 images the phase plate onto the CCD camera and L2 creates a reference wave front with the same curvature, so that basically straight fringes are obtained. Removing L2 creates the spiral fringe pattern.

Fig. 3
Fig. 3

Near-field interferograms with a plane reference wave. (a) m = 1, (b) m = 2, and (c) m = 3.

Fig. 4
Fig. 4

Near-field interferograms with a spherical reference wave. (a) m = 1, (b) m = 2 and (c) m = 3.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ=d0n-1+cosα-βcos β-ncos β-12 d0α21-n-1.

Metrics