Abstract

We present a temperature sensor based on two chirped gratings made in optical fibers tapered by fusion. One of the gratings has a metallic shielding and acts as sensor element, whereas the second grating provides a reference signal. The sensor is interrogated by measuring the power reflected by the two gratings, and the system has an accuracy of 0.05 °C over a linear operation range of more than 10 °C that can be adjusted in the fabrication process.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos, K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood, Mass., 1999).
  2. J. M. Gong, J. M. K. Mac Alpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
    [CrossRef]
  3. G. Duck, M. M. Ohn, “Distributed Bragg gratings sensing with a direct group delay measurement technique,” Opt. Lett. 25, 90–92 (2000).
    [CrossRef]
  4. A. Chtcherbakov, P. L. Swart, “Chirped fiber optic Bragg grating strain sensor with sub-carrier phase detection,” Meas. Sci. Technol. 12, 814–817 (2001).
    [CrossRef]
  5. S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
    [CrossRef]
  6. A. D. Kersey, T. A. Berkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a Fabry-Perot wavelength filter,” Opt. Lett. 18, 1370–1372 (1993).
    [CrossRef] [PubMed]
  7. M. G. Xu, H. Geiger, J. P. Dakin, “Modeling and performance analisys of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
    [CrossRef]
  8. O. Diminstein, N. Gorbatov, M. Tur, “Dispersion-based differential wavelength measurements for Bragg grating sensors,” Electron. Lett. 37, 12–14 (2001).
    [CrossRef]
  9. L. A. Ferreira, J. L. Santos, F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
    [CrossRef]
  10. R. F. Fallon, L. Zhang, L. A. Everral, J. A. R. Williams, I. Bennion, “All-fiber optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
    [CrossRef]
  11. H. L. Ho, W. Jin, C. C. Chan, Y. Zhou, X. W. Wang, “A fiber Bragg grating sensor for static and dynamic measurands,” Sens. Actuators A 96, 21–24 (2002).
    [CrossRef]
  12. R. F. Fallon, L. Zhang, A. Gloag, I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707 (1997).
    [CrossRef]
  13. M. G. Xu, L. Dong, L. Reekie, J. A. Tucknoctt, J. L. Cruz, “Temperature independent strain sensor using a chirped Bragg grating in a tapered fiber,” Electron. Lett. 31, 823–825 (1995).
    [CrossRef]
  14. K. C. Byron, K. Sugden, T. Bricheno, I. Bennion, “Fabrication of chirped fiber Bragg gratings in photosensitive fiber,” Electron. Lett. 29, 1659–1660 (1995).
    [CrossRef]
  15. L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J. Y. Guilloux, J. F. Bayon, “Chromatic dispersion compensation by apodised Bragg gratings within controlled tapered fibers,” Opt. Fiber Technol. 3, 267–271 (1997).
    [CrossRef]
  16. T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–428 (1992).
    [CrossRef]
  17. J. Mora, J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210, 51–55 (2002).
    [CrossRef]

2002 (3)

J. M. Gong, J. M. K. Mac Alpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

H. L. Ho, W. Jin, C. C. Chan, Y. Zhou, X. W. Wang, “A fiber Bragg grating sensor for static and dynamic measurands,” Sens. Actuators A 96, 21–24 (2002).
[CrossRef]

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210, 51–55 (2002).
[CrossRef]

2001 (2)

A. Chtcherbakov, P. L. Swart, “Chirped fiber optic Bragg grating strain sensor with sub-carrier phase detection,” Meas. Sci. Technol. 12, 814–817 (2001).
[CrossRef]

O. Diminstein, N. Gorbatov, M. Tur, “Dispersion-based differential wavelength measurements for Bragg grating sensors,” Electron. Lett. 37, 12–14 (2001).
[CrossRef]

2000 (1)

1998 (1)

R. F. Fallon, L. Zhang, L. A. Everral, J. A. R. Williams, I. Bennion, “All-fiber optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

1997 (3)

L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J. Y. Guilloux, J. F. Bayon, “Chromatic dispersion compensation by apodised Bragg gratings within controlled tapered fibers,” Opt. Fiber Technol. 3, 267–271 (1997).
[CrossRef]

R. F. Fallon, L. Zhang, A. Gloag, I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707 (1997).
[CrossRef]

L. A. Ferreira, J. L. Santos, F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[CrossRef]

1996 (1)

M. G. Xu, H. Geiger, J. P. Dakin, “Modeling and performance analisys of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

1995 (2)

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknoctt, J. L. Cruz, “Temperature independent strain sensor using a chirped Bragg grating in a tapered fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

K. C. Byron, K. Sugden, T. Bricheno, I. Bennion, “Fabrication of chirped fiber Bragg gratings in photosensitive fiber,” Electron. Lett. 29, 1659–1660 (1995).
[CrossRef]

1993 (1)

1992 (2)

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–428 (1992).
[CrossRef]

Andrés, M. V.

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210, 51–55 (2002).
[CrossRef]

Bayon, J. F.

L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J. Y. Guilloux, J. F. Bayon, “Chromatic dispersion compensation by apodised Bragg gratings within controlled tapered fibers,” Opt. Fiber Technol. 3, 267–271 (1997).
[CrossRef]

Bennion, I.

R. F. Fallon, L. Zhang, L. A. Everral, J. A. R. Williams, I. Bennion, “All-fiber optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

R. F. Fallon, L. Zhang, A. Gloag, I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707 (1997).
[CrossRef]

K. C. Byron, K. Sugden, T. Bricheno, I. Bennion, “Fabrication of chirped fiber Bragg gratings in photosensitive fiber,” Electron. Lett. 29, 1659–1660 (1995).
[CrossRef]

Berkoff, T. A.

Birks, T. A.

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–428 (1992).
[CrossRef]

Bricheno, T.

K. C. Byron, K. Sugden, T. Bricheno, I. Bennion, “Fabrication of chirped fiber Bragg gratings in photosensitive fiber,” Electron. Lett. 29, 1659–1660 (1995).
[CrossRef]

Byron, K. C.

K. C. Byron, K. Sugden, T. Bricheno, I. Bennion, “Fabrication of chirped fiber Bragg gratings in photosensitive fiber,” Electron. Lett. 29, 1659–1660 (1995).
[CrossRef]

Chan, C. C.

H. L. Ho, W. Jin, C. C. Chan, Y. Zhou, X. W. Wang, “A fiber Bragg grating sensor for static and dynamic measurands,” Sens. Actuators A 96, 21–24 (2002).
[CrossRef]

J. M. Gong, J. M. K. Mac Alpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Chtcherbakov, A.

A. Chtcherbakov, P. L. Swart, “Chirped fiber optic Bragg grating strain sensor with sub-carrier phase detection,” Meas. Sci. Technol. 12, 814–817 (2001).
[CrossRef]

Cruz, J. L.

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210, 51–55 (2002).
[CrossRef]

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknoctt, J. L. Cruz, “Temperature independent strain sensor using a chirped Bragg grating in a tapered fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

Dakin, J. P.

M. G. Xu, H. Geiger, J. P. Dakin, “Modeling and performance analisys of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Delevaque, E.

L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J. Y. Guilloux, J. F. Bayon, “Chromatic dispersion compensation by apodised Bragg gratings within controlled tapered fibers,” Opt. Fiber Technol. 3, 267–271 (1997).
[CrossRef]

Díez, A.

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210, 51–55 (2002).
[CrossRef]

Diminstein, O.

O. Diminstein, N. Gorbatov, M. Tur, “Dispersion-based differential wavelength measurements for Bragg grating sensors,” Electron. Lett. 37, 12–14 (2001).
[CrossRef]

Dong, L.

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknoctt, J. L. Cruz, “Temperature independent strain sensor using a chirped Bragg grating in a tapered fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

Duck, G.

Everral, L. A.

R. F. Fallon, L. Zhang, L. A. Everral, J. A. R. Williams, I. Bennion, “All-fiber optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

Fallon, R. F.

R. F. Fallon, L. Zhang, L. A. Everral, J. A. R. Williams, I. Bennion, “All-fiber optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

R. F. Fallon, L. Zhang, A. Gloag, I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707 (1997).
[CrossRef]

Farahi, F.

L. A. Ferreira, J. L. Santos, F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[CrossRef]

Ferreira, L. A.

L. A. Ferreira, J. L. Santos, F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[CrossRef]

Geiger, H.

M. G. Xu, H. Geiger, J. P. Dakin, “Modeling and performance analisys of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Gloag, A.

R. F. Fallon, L. Zhang, A. Gloag, I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707 (1997).
[CrossRef]

Gong, J. M.

J. M. Gong, J. M. K. Mac Alpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Gorbatov, N.

O. Diminstein, N. Gorbatov, M. Tur, “Dispersion-based differential wavelength measurements for Bragg grating sensors,” Electron. Lett. 37, 12–14 (2001).
[CrossRef]

Guilloux, J. Y.

L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J. Y. Guilloux, J. F. Bayon, “Chromatic dispersion compensation by apodised Bragg gratings within controlled tapered fibers,” Opt. Fiber Technol. 3, 267–271 (1997).
[CrossRef]

Ho, H. L.

H. L. Ho, W. Jin, C. C. Chan, Y. Zhou, X. W. Wang, “A fiber Bragg grating sensor for static and dynamic measurands,” Sens. Actuators A 96, 21–24 (2002).
[CrossRef]

Jin, W.

H. L. Ho, W. Jin, C. C. Chan, Y. Zhou, X. W. Wang, “A fiber Bragg grating sensor for static and dynamic measurands,” Sens. Actuators A 96, 21–24 (2002).
[CrossRef]

J. M. Gong, J. M. K. Mac Alpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Kalli, K.

A. Othonos, K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood, Mass., 1999).

Kersey, A. D.

Li, Y. W.

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–428 (1992).
[CrossRef]

Liao, Y. B.

J. M. Gong, J. M. K. Mac Alpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Liu, K.

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Mac Alpine, J. M. K.

J. M. Gong, J. M. K. Mac Alpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Measures, R. M.

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Melle, S. M.

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Monerie, M.

L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J. Y. Guilloux, J. F. Bayon, “Chromatic dispersion compensation by apodised Bragg gratings within controlled tapered fibers,” Opt. Fiber Technol. 3, 267–271 (1997).
[CrossRef]

Mora, J.

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210, 51–55 (2002).
[CrossRef]

Morey, W. W.

Morvan, M.

L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J. Y. Guilloux, J. F. Bayon, “Chromatic dispersion compensation by apodised Bragg gratings within controlled tapered fibers,” Opt. Fiber Technol. 3, 267–271 (1997).
[CrossRef]

Ohn, M. M.

Othonos, A.

A. Othonos, K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood, Mass., 1999).

Quetel, L.

L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J. Y. Guilloux, J. F. Bayon, “Chromatic dispersion compensation by apodised Bragg gratings within controlled tapered fibers,” Opt. Fiber Technol. 3, 267–271 (1997).
[CrossRef]

Reekie, L.

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknoctt, J. L. Cruz, “Temperature independent strain sensor using a chirped Bragg grating in a tapered fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

Rivoallan, L.

L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J. Y. Guilloux, J. F. Bayon, “Chromatic dispersion compensation by apodised Bragg gratings within controlled tapered fibers,” Opt. Fiber Technol. 3, 267–271 (1997).
[CrossRef]

Santos, J. L.

L. A. Ferreira, J. L. Santos, F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[CrossRef]

Sugden, K.

K. C. Byron, K. Sugden, T. Bricheno, I. Bennion, “Fabrication of chirped fiber Bragg gratings in photosensitive fiber,” Electron. Lett. 29, 1659–1660 (1995).
[CrossRef]

Swart, P. L.

A. Chtcherbakov, P. L. Swart, “Chirped fiber optic Bragg grating strain sensor with sub-carrier phase detection,” Meas. Sci. Technol. 12, 814–817 (2001).
[CrossRef]

Tucknoctt, J. A.

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknoctt, J. L. Cruz, “Temperature independent strain sensor using a chirped Bragg grating in a tapered fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

Tur, M.

O. Diminstein, N. Gorbatov, M. Tur, “Dispersion-based differential wavelength measurements for Bragg grating sensors,” Electron. Lett. 37, 12–14 (2001).
[CrossRef]

Villatoro, J.

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210, 51–55 (2002).
[CrossRef]

Wang, X. W.

H. L. Ho, W. Jin, C. C. Chan, Y. Zhou, X. W. Wang, “A fiber Bragg grating sensor for static and dynamic measurands,” Sens. Actuators A 96, 21–24 (2002).
[CrossRef]

Williams, J. A. R.

R. F. Fallon, L. Zhang, L. A. Everral, J. A. R. Williams, I. Bennion, “All-fiber optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

Xu, M. G.

M. G. Xu, H. Geiger, J. P. Dakin, “Modeling and performance analisys of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknoctt, J. L. Cruz, “Temperature independent strain sensor using a chirped Bragg grating in a tapered fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

Zhang, L.

R. F. Fallon, L. Zhang, L. A. Everral, J. A. R. Williams, I. Bennion, “All-fiber optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

R. F. Fallon, L. Zhang, A. Gloag, I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707 (1997).
[CrossRef]

Zhang, M.

J. M. Gong, J. M. K. Mac Alpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Zhou, Y.

H. L. Ho, W. Jin, C. C. Chan, Y. Zhou, X. W. Wang, “A fiber Bragg grating sensor for static and dynamic measurands,” Sens. Actuators A 96, 21–24 (2002).
[CrossRef]

Electron. Lett. (4)

O. Diminstein, N. Gorbatov, M. Tur, “Dispersion-based differential wavelength measurements for Bragg grating sensors,” Electron. Lett. 37, 12–14 (2001).
[CrossRef]

R. F. Fallon, L. Zhang, A. Gloag, I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707 (1997).
[CrossRef]

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknoctt, J. L. Cruz, “Temperature independent strain sensor using a chirped Bragg grating in a tapered fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

K. C. Byron, K. Sugden, T. Bricheno, I. Bennion, “Fabrication of chirped fiber Bragg gratings in photosensitive fiber,” Electron. Lett. 29, 1659–1660 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

L. A. Ferreira, J. L. Santos, F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[CrossRef]

J. M. Gong, J. M. K. Mac Alpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

J. Lightwave Technol. (2)

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–428 (1992).
[CrossRef]

M. G. Xu, H. Geiger, J. P. Dakin, “Modeling and performance analisys of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Meas. Sci. Technol. (2)

A. Chtcherbakov, P. L. Swart, “Chirped fiber optic Bragg grating strain sensor with sub-carrier phase detection,” Meas. Sci. Technol. 12, 814–817 (2001).
[CrossRef]

R. F. Fallon, L. Zhang, L. A. Everral, J. A. R. Williams, I. Bennion, “All-fiber optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

Opt. Commun. (1)

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210, 51–55 (2002).
[CrossRef]

Opt. Fiber Technol. (1)

L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J. Y. Guilloux, J. F. Bayon, “Chromatic dispersion compensation by apodised Bragg gratings within controlled tapered fibers,” Opt. Fiber Technol. 3, 267–271 (1997).
[CrossRef]

Opt. Lett. (2)

Sens. Actuators A (1)

H. L. Ho, W. Jin, C. C. Chan, Y. Zhou, X. W. Wang, “A fiber Bragg grating sensor for static and dynamic measurands,” Sens. Actuators A 96, 21–24 (2002).
[CrossRef]

Other (1)

A. Othonos, K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood, Mass., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup to measure the power reflected by a chirped fiber Bragg grating and its temperature dependence. FBG-S, fiber Bragg grating sensor (the geometry of this grating with its metallic jacket is also depicted); FBG-R, reference grating; SLD, super luminescent diode; S, sensor signal; R, reference signal.

Fig. 2
Fig. 2

Bandwidth and reflected power from a grating written in a fiber tapered by fusion as a function of the total lengthening of the fiber.

Fig. 3
Fig. 3

Spectra of the grating when the temperature of the sensor head is held at four static levels. From left to right: 24.5, 31.0, 36.9, and 41.9 °C.

Fig. 4
Fig. 4

Area of the grating spectra with the sensor head fixed at seven different temperatures.

Fig. 5
Fig. 5

Output signal of the interrogation system as a function of the temperature of the sensor head. The inset shows a detail of the main plot.

Fig. 6
Fig. 6

Random error of the output signal. The histogram represents the number of output data points versus their segment of error and the corresponding Gaussian fitting. The inset shows the deviation with respect to the linear fit of each single data point as a function of the temperature.

Metrics