Abstract

The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system’s ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. O. Dubayah, J. B. Drake, “Lidar remote sensing of forestry,” J. Forest. 98, 44–46 (2000).
  2. M. L. Imhoff, “Radar backscatter and biomass saturation: ramification and global biomass inventory,” IEEE Trans. Geosci. Remote Sens. 33, 511–518 (1995).
    [CrossRef]
  3. J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel, S. D. Prince, “Estimation of tropical forest structure characteristics using large-footprint lidar,” Remote Sens. Environ. 79, 305–319 (2002).
    [CrossRef]
  4. M. A. Lefsky, D. Harding, W. B. Cohen, G. Parker, H. H. Shugart, “Surface lidar remote sensing of basal area and biomass in deciduous forest of eastern Maryland, USA,” Remote Sens. Environ. 67, 83–98 (1999).
    [CrossRef]
  5. K. C. Slatton, M. M. Crawford, B. L. Evans, “Fusing interferometric radar and laser altimeter data to estimate surface topography and vegetation heights,” IEEE Trans. Geosci. Remote Sens. 39, 2470–2482 (2001).
    [CrossRef]
  6. D. J. Harding, J. B. Blair, D. L. Rabine, K. L. Still, “SLICER airborne laser altimeter characterization of canopy structure and subcanopy topography for the BOREAS northern and southern study regions: instrument and data product description,” NASA Tech. Memo. NASA/TM-2000-209891 (NASA, Washington, D.C., 2000).
  7. R. O. Dubayah, J. B. Blair, J. L. Bufton, D. B. Clark, J. JaJa, R. G. Knox, S. B. Luthcke, S. Prince, J. F. Weishampel, “The Vegetation Canopy Lidar mission,” in Land Satellite Information in the Next Decade: II. Sources and Applications (American Society for Photogrammetry and Remote Sensing, Bethesda, Md., 1997), pp. 100–112.
  8. J. E. Kalshoven, P. W. Dabney, “Remote sensing of the earth’s surface with an airborne polarized laser,” IEEE Trans. Geosci. Remote Sens. 31, 438–446 (1993).
    [CrossRef]
  9. J. E. Kalshoven, M. R. Tierney, C. S. Daughtry, J. E. McMurtrey, “Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser,” Appl. Opt. 34, 2745–2749 (1995).
    [CrossRef] [PubMed]
  10. S. Tan, R. M. Narayanan, “A multiwavelength airborne polarimetric lidar for vegetation remote sensing: instrumentation and preliminary test results,” in IEEE 2002 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 5, pp. 2675–2677.
  11. S. Tan, R. M. Narayanan, J. E. Kalshoven, “Measurement of Stokes parameters of materials at 1064-nm and 532-nm wavelengths,” in Laser Radar Technology and Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 263–271 (2001).
    [CrossRef]
  12. W. Budde, “Physical detectors of optical radiation,” in Optical Radiation Measurements, F. Grum, C. J. Bartleson, eds. (Academic, New York, 1983), Vol. 4.
  13. G. W. Kamerman, “Laser radar,” in Infrared and Electro-Optical Systems Handbook, Vol. 6 of Active Electro-Optical Systems, C. Fox, ed. (SPIE, Bellingham, Wash., 1993), pp. 1–76.
  14. A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).
  15. B. M. Oliver, “Thermal and quantum noise,” Proc. IEEE 53, 436–454 (1965).
    [CrossRef]
  16. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla., 1992).
  17. A. Mecherikunnel, C. H. Duncan, “Total and spectral solar irradiance measured at ground surface,” Appl. Opt. 21, 554–556 (1982).
    [CrossRef] [PubMed]
  18. J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688–1700 (1965).
    [CrossRef]
  19. J. W. Goodman, “Statistical properties of laser speckle pattern,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer, New York, 1984), pp. 9–75.
  20. C. S. Gardner, “Target signatures for laser altimeters: an analysis,” Appl. Opt. 21, 448–453 (1982).
    [CrossRef] [PubMed]
  21. B. R. Foy, B. D. McVey, R. R. Petrin, J. J. Tiee, C. W. Wilson, “Remote mapping of vegetation and geological features by lidar in the 9–11-μm region,” Appl. Opt. 40, 4344–4352 (2001).
    [CrossRef]
  22. M. J. Kavaya, “Polarization effects on hard target calibration of lidar systems,” Appl. Opt. 26, 796–804 (1987).
    [CrossRef] [PubMed]
  23. C. K. Wang, W. D. Philpot, “Using SHOALS lidar system to detect bottom material change,” in IEEE 2002 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 5, pp. 2690–2692.
  24. Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28, 865–872 (1990).
    [CrossRef]
  25. P. N. Raven, D. L. Jordan, C. E. Smith, “Polarized direction reflectance from laurel and mullein leaves,” Opt. Eng. 41, 1002–1012 (2002).
    [CrossRef]

2002

J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel, S. D. Prince, “Estimation of tropical forest structure characteristics using large-footprint lidar,” Remote Sens. Environ. 79, 305–319 (2002).
[CrossRef]

P. N. Raven, D. L. Jordan, C. E. Smith, “Polarized direction reflectance from laurel and mullein leaves,” Opt. Eng. 41, 1002–1012 (2002).
[CrossRef]

2001

B. R. Foy, B. D. McVey, R. R. Petrin, J. J. Tiee, C. W. Wilson, “Remote mapping of vegetation and geological features by lidar in the 9–11-μm region,” Appl. Opt. 40, 4344–4352 (2001).
[CrossRef]

K. C. Slatton, M. M. Crawford, B. L. Evans, “Fusing interferometric radar and laser altimeter data to estimate surface topography and vegetation heights,” IEEE Trans. Geosci. Remote Sens. 39, 2470–2482 (2001).
[CrossRef]

2000

R. O. Dubayah, J. B. Drake, “Lidar remote sensing of forestry,” J. Forest. 98, 44–46 (2000).

1999

M. A. Lefsky, D. Harding, W. B. Cohen, G. Parker, H. H. Shugart, “Surface lidar remote sensing of basal area and biomass in deciduous forest of eastern Maryland, USA,” Remote Sens. Environ. 67, 83–98 (1999).
[CrossRef]

1995

M. L. Imhoff, “Radar backscatter and biomass saturation: ramification and global biomass inventory,” IEEE Trans. Geosci. Remote Sens. 33, 511–518 (1995).
[CrossRef]

J. E. Kalshoven, M. R. Tierney, C. S. Daughtry, J. E. McMurtrey, “Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser,” Appl. Opt. 34, 2745–2749 (1995).
[CrossRef] [PubMed]

1993

J. E. Kalshoven, P. W. Dabney, “Remote sensing of the earth’s surface with an airborne polarized laser,” IEEE Trans. Geosci. Remote Sens. 31, 438–446 (1993).
[CrossRef]

1990

Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28, 865–872 (1990).
[CrossRef]

1987

1982

1965

J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688–1700 (1965).
[CrossRef]

B. M. Oliver, “Thermal and quantum noise,” Proc. IEEE 53, 436–454 (1965).
[CrossRef]

Blair, J. B.

J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel, S. D. Prince, “Estimation of tropical forest structure characteristics using large-footprint lidar,” Remote Sens. Environ. 79, 305–319 (2002).
[CrossRef]

D. J. Harding, J. B. Blair, D. L. Rabine, K. L. Still, “SLICER airborne laser altimeter characterization of canopy structure and subcanopy topography for the BOREAS northern and southern study regions: instrument and data product description,” NASA Tech. Memo. NASA/TM-2000-209891 (NASA, Washington, D.C., 2000).

R. O. Dubayah, J. B. Blair, J. L. Bufton, D. B. Clark, J. JaJa, R. G. Knox, S. B. Luthcke, S. Prince, J. F. Weishampel, “The Vegetation Canopy Lidar mission,” in Land Satellite Information in the Next Decade: II. Sources and Applications (American Society for Photogrammetry and Remote Sensing, Bethesda, Md., 1997), pp. 100–112.

Budde, W.

W. Budde, “Physical detectors of optical radiation,” in Optical Radiation Measurements, F. Grum, C. J. Bartleson, eds. (Academic, New York, 1983), Vol. 4.

Bufton, J. L.

R. O. Dubayah, J. B. Blair, J. L. Bufton, D. B. Clark, J. JaJa, R. G. Knox, S. B. Luthcke, S. Prince, J. F. Weishampel, “The Vegetation Canopy Lidar mission,” in Land Satellite Information in the Next Decade: II. Sources and Applications (American Society for Photogrammetry and Remote Sensing, Bethesda, Md., 1997), pp. 100–112.

Chazdon, R. L.

J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel, S. D. Prince, “Estimation of tropical forest structure characteristics using large-footprint lidar,” Remote Sens. Environ. 79, 305–319 (2002).
[CrossRef]

Clark, D. B.

J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel, S. D. Prince, “Estimation of tropical forest structure characteristics using large-footprint lidar,” Remote Sens. Environ. 79, 305–319 (2002).
[CrossRef]

R. O. Dubayah, J. B. Blair, J. L. Bufton, D. B. Clark, J. JaJa, R. G. Knox, S. B. Luthcke, S. Prince, J. F. Weishampel, “The Vegetation Canopy Lidar mission,” in Land Satellite Information in the Next Decade: II. Sources and Applications (American Society for Photogrammetry and Remote Sensing, Bethesda, Md., 1997), pp. 100–112.

Cohen, W. B.

M. A. Lefsky, D. Harding, W. B. Cohen, G. Parker, H. H. Shugart, “Surface lidar remote sensing of basal area and biomass in deciduous forest of eastern Maryland, USA,” Remote Sens. Environ. 67, 83–98 (1999).
[CrossRef]

Crawford, M. M.

K. C. Slatton, M. M. Crawford, B. L. Evans, “Fusing interferometric radar and laser altimeter data to estimate surface topography and vegetation heights,” IEEE Trans. Geosci. Remote Sens. 39, 2470–2482 (2001).
[CrossRef]

Dabney, P. W.

J. E. Kalshoven, P. W. Dabney, “Remote sensing of the earth’s surface with an airborne polarized laser,” IEEE Trans. Geosci. Remote Sens. 31, 438–446 (1993).
[CrossRef]

Daughtry, C. S.

Drake, J. B.

J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel, S. D. Prince, “Estimation of tropical forest structure characteristics using large-footprint lidar,” Remote Sens. Environ. 79, 305–319 (2002).
[CrossRef]

R. O. Dubayah, J. B. Drake, “Lidar remote sensing of forestry,” J. Forest. 98, 44–46 (2000).

Dubayah, R. O.

J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel, S. D. Prince, “Estimation of tropical forest structure characteristics using large-footprint lidar,” Remote Sens. Environ. 79, 305–319 (2002).
[CrossRef]

R. O. Dubayah, J. B. Drake, “Lidar remote sensing of forestry,” J. Forest. 98, 44–46 (2000).

R. O. Dubayah, J. B. Blair, J. L. Bufton, D. B. Clark, J. JaJa, R. G. Knox, S. B. Luthcke, S. Prince, J. F. Weishampel, “The Vegetation Canopy Lidar mission,” in Land Satellite Information in the Next Decade: II. Sources and Applications (American Society for Photogrammetry and Remote Sensing, Bethesda, Md., 1997), pp. 100–112.

Duncan, C. H.

Evans, B. L.

K. C. Slatton, M. M. Crawford, B. L. Evans, “Fusing interferometric radar and laser altimeter data to estimate surface topography and vegetation heights,” IEEE Trans. Geosci. Remote Sens. 39, 2470–2482 (2001).
[CrossRef]

Foy, B. R.

Gardner, C. S.

Goodman, J. W.

J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688–1700 (1965).
[CrossRef]

J. W. Goodman, “Statistical properties of laser speckle pattern,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer, New York, 1984), pp. 9–75.

Harding, D.

M. A. Lefsky, D. Harding, W. B. Cohen, G. Parker, H. H. Shugart, “Surface lidar remote sensing of basal area and biomass in deciduous forest of eastern Maryland, USA,” Remote Sens. Environ. 67, 83–98 (1999).
[CrossRef]

Harding, D. J.

D. J. Harding, J. B. Blair, D. L. Rabine, K. L. Still, “SLICER airborne laser altimeter characterization of canopy structure and subcanopy topography for the BOREAS northern and southern study regions: instrument and data product description,” NASA Tech. Memo. NASA/TM-2000-209891 (NASA, Washington, D.C., 2000).

Hofton, M. A.

J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel, S. D. Prince, “Estimation of tropical forest structure characteristics using large-footprint lidar,” Remote Sens. Environ. 79, 305–319 (2002).
[CrossRef]

Imhoff, M. L.

M. L. Imhoff, “Radar backscatter and biomass saturation: ramification and global biomass inventory,” IEEE Trans. Geosci. Remote Sens. 33, 511–518 (1995).
[CrossRef]

Ishimaru, A.

Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28, 865–872 (1990).
[CrossRef]

JaJa, J.

R. O. Dubayah, J. B. Blair, J. L. Bufton, D. B. Clark, J. JaJa, R. G. Knox, S. B. Luthcke, S. Prince, J. F. Weishampel, “The Vegetation Canopy Lidar mission,” in Land Satellite Information in the Next Decade: II. Sources and Applications (American Society for Photogrammetry and Remote Sensing, Bethesda, Md., 1997), pp. 100–112.

Jelalian, A. V.

A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).

Jordan, D. L.

P. N. Raven, D. L. Jordan, C. E. Smith, “Polarized direction reflectance from laurel and mullein leaves,” Opt. Eng. 41, 1002–1012 (2002).
[CrossRef]

Kalshoven, J. E.

J. E. Kalshoven, M. R. Tierney, C. S. Daughtry, J. E. McMurtrey, “Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser,” Appl. Opt. 34, 2745–2749 (1995).
[CrossRef] [PubMed]

J. E. Kalshoven, P. W. Dabney, “Remote sensing of the earth’s surface with an airborne polarized laser,” IEEE Trans. Geosci. Remote Sens. 31, 438–446 (1993).
[CrossRef]

S. Tan, R. M. Narayanan, J. E. Kalshoven, “Measurement of Stokes parameters of materials at 1064-nm and 532-nm wavelengths,” in Laser Radar Technology and Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 263–271 (2001).
[CrossRef]

Kamerman, G. W.

G. W. Kamerman, “Laser radar,” in Infrared and Electro-Optical Systems Handbook, Vol. 6 of Active Electro-Optical Systems, C. Fox, ed. (SPIE, Bellingham, Wash., 1993), pp. 1–76.

Kavaya, M. J.

Knox, R. G.

J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel, S. D. Prince, “Estimation of tropical forest structure characteristics using large-footprint lidar,” Remote Sens. Environ. 79, 305–319 (2002).
[CrossRef]

R. O. Dubayah, J. B. Blair, J. L. Bufton, D. B. Clark, J. JaJa, R. G. Knox, S. B. Luthcke, S. Prince, J. F. Weishampel, “The Vegetation Canopy Lidar mission,” in Land Satellite Information in the Next Decade: II. Sources and Applications (American Society for Photogrammetry and Remote Sensing, Bethesda, Md., 1997), pp. 100–112.

Kuga, Y.

Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28, 865–872 (1990).
[CrossRef]

Lefsky, M. A.

M. A. Lefsky, D. Harding, W. B. Cohen, G. Parker, H. H. Shugart, “Surface lidar remote sensing of basal area and biomass in deciduous forest of eastern Maryland, USA,” Remote Sens. Environ. 67, 83–98 (1999).
[CrossRef]

Luthcke, S. B.

R. O. Dubayah, J. B. Blair, J. L. Bufton, D. B. Clark, J. JaJa, R. G. Knox, S. B. Luthcke, S. Prince, J. F. Weishampel, “The Vegetation Canopy Lidar mission,” in Land Satellite Information in the Next Decade: II. Sources and Applications (American Society for Photogrammetry and Remote Sensing, Bethesda, Md., 1997), pp. 100–112.

Ma, Q.

Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28, 865–872 (1990).
[CrossRef]

McMurtrey, J. E.

McVey, B. D.

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla., 1992).

Mecherikunnel, A.

Narayanan, R. M.

S. Tan, R. M. Narayanan, “A multiwavelength airborne polarimetric lidar for vegetation remote sensing: instrumentation and preliminary test results,” in IEEE 2002 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 5, pp. 2675–2677.

S. Tan, R. M. Narayanan, J. E. Kalshoven, “Measurement of Stokes parameters of materials at 1064-nm and 532-nm wavelengths,” in Laser Radar Technology and Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 263–271 (2001).
[CrossRef]

Oliver, B. M.

B. M. Oliver, “Thermal and quantum noise,” Proc. IEEE 53, 436–454 (1965).
[CrossRef]

Parker, G.

M. A. Lefsky, D. Harding, W. B. Cohen, G. Parker, H. H. Shugart, “Surface lidar remote sensing of basal area and biomass in deciduous forest of eastern Maryland, USA,” Remote Sens. Environ. 67, 83–98 (1999).
[CrossRef]

Petrin, R. R.

Philpot, W. D.

C. K. Wang, W. D. Philpot, “Using SHOALS lidar system to detect bottom material change,” in IEEE 2002 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 5, pp. 2690–2692.

Phu, P.

Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28, 865–872 (1990).
[CrossRef]

Prince, S.

R. O. Dubayah, J. B. Blair, J. L. Bufton, D. B. Clark, J. JaJa, R. G. Knox, S. B. Luthcke, S. Prince, J. F. Weishampel, “The Vegetation Canopy Lidar mission,” in Land Satellite Information in the Next Decade: II. Sources and Applications (American Society for Photogrammetry and Remote Sensing, Bethesda, Md., 1997), pp. 100–112.

Prince, S. D.

J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel, S. D. Prince, “Estimation of tropical forest structure characteristics using large-footprint lidar,” Remote Sens. Environ. 79, 305–319 (2002).
[CrossRef]

Rabine, D. L.

D. J. Harding, J. B. Blair, D. L. Rabine, K. L. Still, “SLICER airborne laser altimeter characterization of canopy structure and subcanopy topography for the BOREAS northern and southern study regions: instrument and data product description,” NASA Tech. Memo. NASA/TM-2000-209891 (NASA, Washington, D.C., 2000).

Raven, P. N.

P. N. Raven, D. L. Jordan, C. E. Smith, “Polarized direction reflectance from laurel and mullein leaves,” Opt. Eng. 41, 1002–1012 (2002).
[CrossRef]

Shugart, H. H.

M. A. Lefsky, D. Harding, W. B. Cohen, G. Parker, H. H. Shugart, “Surface lidar remote sensing of basal area and biomass in deciduous forest of eastern Maryland, USA,” Remote Sens. Environ. 67, 83–98 (1999).
[CrossRef]

Slatton, K. C.

K. C. Slatton, M. M. Crawford, B. L. Evans, “Fusing interferometric radar and laser altimeter data to estimate surface topography and vegetation heights,” IEEE Trans. Geosci. Remote Sens. 39, 2470–2482 (2001).
[CrossRef]

Smith, C. E.

P. N. Raven, D. L. Jordan, C. E. Smith, “Polarized direction reflectance from laurel and mullein leaves,” Opt. Eng. 41, 1002–1012 (2002).
[CrossRef]

Still, K. L.

D. J. Harding, J. B. Blair, D. L. Rabine, K. L. Still, “SLICER airborne laser altimeter characterization of canopy structure and subcanopy topography for the BOREAS northern and southern study regions: instrument and data product description,” NASA Tech. Memo. NASA/TM-2000-209891 (NASA, Washington, D.C., 2000).

Tan, S.

S. Tan, R. M. Narayanan, “A multiwavelength airborne polarimetric lidar for vegetation remote sensing: instrumentation and preliminary test results,” in IEEE 2002 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 5, pp. 2675–2677.

S. Tan, R. M. Narayanan, J. E. Kalshoven, “Measurement of Stokes parameters of materials at 1064-nm and 532-nm wavelengths,” in Laser Radar Technology and Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 263–271 (2001).
[CrossRef]

Tiee, J. J.

Tierney, M. R.

Wang, C. K.

C. K. Wang, W. D. Philpot, “Using SHOALS lidar system to detect bottom material change,” in IEEE 2002 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 5, pp. 2690–2692.

Weishampel, J. F.

J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel, S. D. Prince, “Estimation of tropical forest structure characteristics using large-footprint lidar,” Remote Sens. Environ. 79, 305–319 (2002).
[CrossRef]

R. O. Dubayah, J. B. Blair, J. L. Bufton, D. B. Clark, J. JaJa, R. G. Knox, S. B. Luthcke, S. Prince, J. F. Weishampel, “The Vegetation Canopy Lidar mission,” in Land Satellite Information in the Next Decade: II. Sources and Applications (American Society for Photogrammetry and Remote Sensing, Bethesda, Md., 1997), pp. 100–112.

Wilson, C. W.

Appl. Opt.

IEEE Trans. Geosci. Remote Sens.

M. L. Imhoff, “Radar backscatter and biomass saturation: ramification and global biomass inventory,” IEEE Trans. Geosci. Remote Sens. 33, 511–518 (1995).
[CrossRef]

K. C. Slatton, M. M. Crawford, B. L. Evans, “Fusing interferometric radar and laser altimeter data to estimate surface topography and vegetation heights,” IEEE Trans. Geosci. Remote Sens. 39, 2470–2482 (2001).
[CrossRef]

J. E. Kalshoven, P. W. Dabney, “Remote sensing of the earth’s surface with an airborne polarized laser,” IEEE Trans. Geosci. Remote Sens. 31, 438–446 (1993).
[CrossRef]

Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28, 865–872 (1990).
[CrossRef]

J. Forest.

R. O. Dubayah, J. B. Drake, “Lidar remote sensing of forestry,” J. Forest. 98, 44–46 (2000).

Opt. Eng.

P. N. Raven, D. L. Jordan, C. E. Smith, “Polarized direction reflectance from laurel and mullein leaves,” Opt. Eng. 41, 1002–1012 (2002).
[CrossRef]

Proc. IEEE

B. M. Oliver, “Thermal and quantum noise,” Proc. IEEE 53, 436–454 (1965).
[CrossRef]

J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688–1700 (1965).
[CrossRef]

Remote Sens. Environ.

J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdon, J. F. Weishampel, S. D. Prince, “Estimation of tropical forest structure characteristics using large-footprint lidar,” Remote Sens. Environ. 79, 305–319 (2002).
[CrossRef]

M. A. Lefsky, D. Harding, W. B. Cohen, G. Parker, H. H. Shugart, “Surface lidar remote sensing of basal area and biomass in deciduous forest of eastern Maryland, USA,” Remote Sens. Environ. 67, 83–98 (1999).
[CrossRef]

Other

D. J. Harding, J. B. Blair, D. L. Rabine, K. L. Still, “SLICER airborne laser altimeter characterization of canopy structure and subcanopy topography for the BOREAS northern and southern study regions: instrument and data product description,” NASA Tech. Memo. NASA/TM-2000-209891 (NASA, Washington, D.C., 2000).

R. O. Dubayah, J. B. Blair, J. L. Bufton, D. B. Clark, J. JaJa, R. G. Knox, S. B. Luthcke, S. Prince, J. F. Weishampel, “The Vegetation Canopy Lidar mission,” in Land Satellite Information in the Next Decade: II. Sources and Applications (American Society for Photogrammetry and Remote Sensing, Bethesda, Md., 1997), pp. 100–112.

S. Tan, R. M. Narayanan, “A multiwavelength airborne polarimetric lidar for vegetation remote sensing: instrumentation and preliminary test results,” in IEEE 2002 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 5, pp. 2675–2677.

S. Tan, R. M. Narayanan, J. E. Kalshoven, “Measurement of Stokes parameters of materials at 1064-nm and 532-nm wavelengths,” in Laser Radar Technology and Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 263–271 (2001).
[CrossRef]

W. Budde, “Physical detectors of optical radiation,” in Optical Radiation Measurements, F. Grum, C. J. Bartleson, eds. (Academic, New York, 1983), Vol. 4.

G. W. Kamerman, “Laser radar,” in Infrared and Electro-Optical Systems Handbook, Vol. 6 of Active Electro-Optical Systems, C. Fox, ed. (SPIE, Bellingham, Wash., 1993), pp. 1–76.

A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).

J. W. Goodman, “Statistical properties of laser speckle pattern,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer, New York, 1984), pp. 9–75.

C. K. Wang, W. D. Philpot, “Using SHOALS lidar system to detect bottom material change,” in IEEE 2002 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 5, pp. 2690–2692.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

MAPL system block diagram. HV, high voltage.

Fig. 2
Fig. 2

MAPL system receiving optics.

Fig. 3
Fig. 3

Photographs of the MAPL system. (a) Bottom view of the lidar box (including the receiving optics and the laser head), (b) side view of the lidar box, (c) rack mount of the electronics devices.

Fig. 4
Fig. 4

Timing diagram of the laser Q-switch and output.

Fig. 5
Fig. 5

MAPL system timing diagram. System delay refers to any hardware or software delays.

Fig. 6
Fig. 6

Repeated lidar returns from a wall target with the MAPL system.

Fig. 7
Fig. 7

Laboratory measurement of a canvas polarimetric reflectance with the modified ALPS system at 1064 and 532 nm. IR, infrared; GN, green.

Fig. 8
Fig. 8

Polarimetric lidar return at 1064 and 532 nm from a bottomland forest. IR, infrared; GN, green.

Fig. 9
Fig. 9

Typical lidar horizontal canopy return waveform.

Fig. 10
Fig. 10

Forest cross polarization at (a) 1064 nm and (b) 532 nm.

Tables (3)

Tables Icon

Table 1 Parameters of the MAPL System

Tables Icon

Table 2 Parameters of the Two PMT Detectors

Tables Icon

Table 3 MAPL Range Measurement Results Compared with the Results from the Sokkia SET600 Electronic Total Station

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

NEP=2eidarkGΔf1/2/S,
PR=πPTρTD216R2 TA2ηTηR,
SNR=is2isq2+ibk2+idark2+ith2,
SNR=eηhν2PR22eG2Δfis+idark+ibk+4KTΔfRL,
TR=delay+1/sampling rate×sampling points-80 ns-5 ns.
R=cTR/2,

Metrics