Abstract

We show an experimental proof of concept for a nonresonant recirculation method to increase the conversion efficiency of second-harmonic generation (SHG) with type II phase matching. As much as a factor-of-4 efficiency increase compared with that of single-pass SHG is possible, provided that the recirculation length is within the coherence length of the pump laser. Nonresonant recirculating SHG may be valuable in systems in which intracavity doubling is not practicable, such as high-power cw bulk solid-state or fiber lasers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Moore, K. Koch, “Nonresonant recirculation configurations for optical frequency doubling and tripling,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 599–607.
  2. L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
    [Crossref]
  3. H. Vanherzeele, J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
    [Crossref] [PubMed]
  4. Y. Wang, B. Luther-Davies, “Optical-parametric-amplification-based prepulse eliminator for a chirped-pulse-amplification Nd:glass laser,” J. Opt. Soc. Am. B 11, 1531–1538 (1994).
    [Crossref]
  5. International Organization for Standardization, “Lasers and laser related equipment—test methods for laser beam parameters—beam widths, divergence angle and beam propagation factor,” ISO Standard 11146:1999 (International Organization for Standardization, Geneva, 1999).
  6. T. Sean Ross, G. T. Moore, “Nonresonant recirculating second-harmonic generator,” in Nonlinear Optics, Vol. 79 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper PD-4.

1994 (2)

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
[Crossref]

Y. Wang, B. Luther-Davies, “Optical-parametric-amplification-based prepulse eliminator for a chirped-pulse-amplification Nd:glass laser,” J. Opt. Soc. Am. B 11, 1531–1538 (1994).
[Crossref]

1992 (1)

Bierlein, J. D.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
[Crossref]

H. Vanherzeele, J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
[Crossref] [PubMed]

Cheng, L. K.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
[Crossref]

Cheng, L. T.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
[Crossref]

Galperin, J.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
[Crossref]

Hotsenpiller, P. A. M.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
[Crossref]

Koch, K.

G. T. Moore, K. Koch, “Nonresonant recirculation configurations for optical frequency doubling and tripling,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 599–607.

Luther-Davies, B.

Moore, G. T.

T. Sean Ross, G. T. Moore, “Nonresonant recirculating second-harmonic generator,” in Nonlinear Optics, Vol. 79 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper PD-4.

G. T. Moore, K. Koch, “Nonresonant recirculation configurations for optical frequency doubling and tripling,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 599–607.

Sean Ross, T.

T. Sean Ross, G. T. Moore, “Nonresonant recirculating second-harmonic generator,” in Nonlinear Optics, Vol. 79 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper PD-4.

Vanherzeele, H.

Wang, Y.

J. Cryst. Growth (1)

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Other (3)

International Organization for Standardization, “Lasers and laser related equipment—test methods for laser beam parameters—beam widths, divergence angle and beam propagation factor,” ISO Standard 11146:1999 (International Organization for Standardization, Geneva, 1999).

T. Sean Ross, G. T. Moore, “Nonresonant recirculating second-harmonic generator,” in Nonlinear Optics, Vol. 79 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper PD-4.

G. T. Moore, K. Koch, “Nonresonant recirculation configurations for optical frequency doubling and tripling,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 599–607.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Recirculating doubler setup.

Fig. 2
Fig. 2

Theoretical efficiency of the NRD and SHG devices.

Fig. 3
Fig. 3

cw autocorrelation of the pump laser used in the NRD experiment: solid curve, theory; points, experimental data.

Fig. 4
Fig. 4

cw second-order autocorrelator.

Fig. 5
Fig. 5

Recirculating doubler cw conversion efficiency: top curve, two-pass coherent NRD; middle curve, two-pass incoherent SHG2; bottom curve, single pass.

Fig. 6
Fig. 6

Recirculating doubler pulsed conversion efficiency: top curve, two-pass coherent NRD; bottom curve, single-pass SHG1.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ISHG  II  E2E2=12 EFund212 Efund2=14 Ifund2.
ISHG  II  E2E2=(Efund)2(Efund)2=Ifund2.
Et=n En exp-2πint/T.
Et+τ=n En exp[-2πint+τ/T].
ISHG  E*tE*t+τEtEt+τ=2 m,n PmPn cos[m-nπτ/T].
INRDISHG1=4 m,n PmPncos2[m-nπτ/T]n Pn2.
ISHG  m,n PmPn cos[m-nπτ/T]1+z0+cτ2+z02/2Z2,

Metrics