Abstract

Correlations between the refractive-index change and the concentration of an oxygen-deficient center (ODC) induced by thermal treatments and laser irradiation are examined to clarify the origin of laser-induced volume compaction in synthetic SiO2 glasses. A linear correlation between them was clearly observed for thermally induced ODC, whereas no correlation was found for ArF or F2 laser irradiation. The results demonstrate that the dominant origin of laser-induced compaction is not ODC formation. Furthermore, we found that the presence of H2 in SiO2 glass had no influence on volume compaction but enhanced crack formation upon laser irradiation, a phenomenon most likely due to stress corrosion.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mori, “Performance of the ArF scanning exposure tool,” in Optical Microlithography XII, L. Van den Hove, ed., Proc. SPIE3679, 522–529 (1999).
    [CrossRef]
  2. M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
    [CrossRef]
  3. M. Rothschild, D. J. Erlich, D. C. Schaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
    [CrossRef]
  4. J. A. Ruller, E. J. Friebele, “The effect of gamma-irradiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
    [CrossRef]
  5. R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–468 (1995).
  6. T. E. Tsai, D. L. Griscom, “Experimental evidence for excitonic mechanism of defect generation in high-purity silica,” Phys. Rev. Lett. 67, 2517–2520 (1991).
    [CrossRef] [PubMed]
  7. Y. Ikuta, S. Kikugawa, M. Hirano, H. Hosono, “Defect formation and structural alteration in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol. B 18, 2891–2895 (2000).
    [CrossRef]
  8. D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
    [CrossRef]
  9. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
    [CrossRef]
  10. R. Schenker, W. Oldham, “Effects of compaction on 193 nm lithographic system performance,” J. Vac. Sci. Technol. B 14, 3709–3713 (1996).
    [CrossRef]
  11. E. M. Wright, M. Mansuripur, V. Liberman, K. Bates, “Spatial pattern of microchannel formation in fused silica irradiated by nanosecond ultraviolet pulses,” Appl. Opt. 38, 5785–5788 (1999).
    [CrossRef]
  12. D. C. Allan, C. Smith, N. F. Borrelli, T. P. Seward, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
    [CrossRef] [PubMed]
  13. N. F. Borrelli, C. Smith, D. C. Allan, T. P. Seward, “Densification of fused silica under 193-nm excitation,” J. Opt. Soc. Am. B 14, 1606–1615 (1997).
    [CrossRef]
  14. V. Liberman, M. R. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. Grenville, “Excimer-laser-induced densification of fused silica: laser-fluence and material-grade effects on the scaling law,” J. Non-Cryst. Solids 244, 159–171 (1999).
    [CrossRef]
  15. F. Piao, W. G. Oldham, E. E. Haller, “The mechanism of radiation-induced compaction in vitreous silica,” J. Non-Cryst. Solids 276, 61–71 (2000).
    [CrossRef]
  16. Y. Morimoto, T. Igarashi, T. Okanuma, “Vacuum ultraviolet-induced strain in vitreous silica used for xenon lamp bulbs,” J. Non-Cryst. Solids 179, 260–275 (1994).
    [CrossRef]
  17. V. B. Sulimov, P. V. Sushko, A. H. Edwards, A. L. Shluger, A. M. Stoneham, “Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz,” Phys. Rev. B 66, 24108–24121 (2002).
    [CrossRef]
  18. Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
    [CrossRef]
  19. A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
    [CrossRef]
  20. H. Hosono, Y. Abe, H. Imai, K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B 44, 12043–12045 (1991).
    [CrossRef]
  21. J. P. Williams, Y. Su, W. R. Strzegowski, B. L. Butler, H. L. Hoover, V. O. Altemose, “Direct determination of water in glass,” Ceram. Bull. 55, 524–527 (1976).
  22. V. K. Khotichenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” J. Appl. Spectrosc. 46, 632–635 (1987).
    [CrossRef]
  23. S. Yonemori, A. Masui, M. Noshiro, “Structural study of quartz glasses doped with fluorine by 19F-NMR,” Yogyo Kyoukai Shi 94, 863–866 (1986).
    [CrossRef]
  24. D. P. Hand, P. St. J. Russell, “Photoinduced refractive index changes in germanosilicate fibers,” Opt. Lett. 15, 102–104 (1990).
    [CrossRef]
  25. T. A. Michalske, S. W. Freiman, “Molecular mechanism for stress corrosion in vitreous silica,” J. Am. Ceram. Soc. 66, 284–288 (1983).
    [CrossRef]
  26. B. C. Bunker, “Molecular mechanism for corrosion of silica and silicate glasses,” J. Non-Cryst. Solids 179, 300–308 (1994).
    [CrossRef]

2002

V. B. Sulimov, P. V. Sushko, A. H. Edwards, A. L. Shluger, A. M. Stoneham, “Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz,” Phys. Rev. B 66, 24108–24121 (2002).
[CrossRef]

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

2000

F. Piao, W. G. Oldham, E. E. Haller, “The mechanism of radiation-induced compaction in vitreous silica,” J. Non-Cryst. Solids 276, 61–71 (2000).
[CrossRef]

Y. Ikuta, S. Kikugawa, M. Hirano, H. Hosono, “Defect formation and structural alteration in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol. B 18, 2891–2895 (2000).
[CrossRef]

1999

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

V. Liberman, M. R. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. Grenville, “Excimer-laser-induced densification of fused silica: laser-fluence and material-grade effects on the scaling law,” J. Non-Cryst. Solids 244, 159–171 (1999).
[CrossRef]

E. M. Wright, M. Mansuripur, V. Liberman, K. Bates, “Spatial pattern of microchannel formation in fused silica irradiated by nanosecond ultraviolet pulses,” Appl. Opt. 38, 5785–5788 (1999).
[CrossRef]

1998

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[CrossRef]

1997

1996

D. C. Allan, C. Smith, N. F. Borrelli, T. P. Seward, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
[CrossRef] [PubMed]

R. Schenker, W. Oldham, “Effects of compaction on 193 nm lithographic system performance,” J. Vac. Sci. Technol. B 14, 3709–3713 (1996).
[CrossRef]

1995

A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

1994

Y. Morimoto, T. Igarashi, T. Okanuma, “Vacuum ultraviolet-induced strain in vitreous silica used for xenon lamp bulbs,” J. Non-Cryst. Solids 179, 260–275 (1994).
[CrossRef]

B. C. Bunker, “Molecular mechanism for corrosion of silica and silicate glasses,” J. Non-Cryst. Solids 179, 300–308 (1994).
[CrossRef]

1991

H. Hosono, Y. Abe, H. Imai, K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B 44, 12043–12045 (1991).
[CrossRef]

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
[CrossRef]

J. A. Ruller, E. J. Friebele, “The effect of gamma-irradiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
[CrossRef]

T. E. Tsai, D. L. Griscom, “Experimental evidence for excitonic mechanism of defect generation in high-purity silica,” Phys. Rev. Lett. 67, 2517–2520 (1991).
[CrossRef] [PubMed]

1990

1989

M. Rothschild, D. J. Erlich, D. C. Schaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

1987

V. K. Khotichenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” J. Appl. Spectrosc. 46, 632–635 (1987).
[CrossRef]

1986

S. Yonemori, A. Masui, M. Noshiro, “Structural study of quartz glasses doped with fluorine by 19F-NMR,” Yogyo Kyoukai Shi 94, 863–866 (1986).
[CrossRef]

1983

T. A. Michalske, S. W. Freiman, “Molecular mechanism for stress corrosion in vitreous silica,” J. Am. Ceram. Soc. 66, 284–288 (1983).
[CrossRef]

1976

J. P. Williams, Y. Su, W. R. Strzegowski, B. L. Butler, H. L. Hoover, V. O. Altemose, “Direct determination of water in glass,” Ceram. Bull. 55, 524–527 (1976).

Abe, Y.

H. Hosono, Y. Abe, H. Imai, K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B 44, 12043–12045 (1991).
[CrossRef]

Agarwal, A.

A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

Allan, D. C.

Altemose, V. O.

J. P. Williams, Y. Su, W. R. Strzegowski, B. L. Butler, H. L. Hoover, V. O. Altemose, “Direct determination of water in glass,” Ceram. Bull. 55, 524–527 (1976).

Arai, K.

H. Hosono, Y. Abe, H. Imai, K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B 44, 12043–12045 (1991).
[CrossRef]

Bates, A. K.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Bates, K.

Bloomstein, T. M.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Borrelli, N. F.

Bunker, B. C.

B. C. Bunker, “Molecular mechanism for corrosion of silica and silicate glasses,” J. Non-Cryst. Solids 179, 300–308 (1994).
[CrossRef]

Butler, B. L.

J. P. Williams, Y. Su, W. R. Strzegowski, B. L. Butler, H. L. Hoover, V. O. Altemose, “Direct determination of water in glass,” Ceram. Bull. 55, 524–527 (1976).

Curtin, J. E.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Davis, K. M.

A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

Downs, D. K.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Edwards, A. H.

V. B. Sulimov, P. V. Sushko, A. H. Edwards, A. L. Shluger, A. M. Stoneham, “Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz,” Phys. Rev. B 66, 24108–24121 (2002).
[CrossRef]

Eichner, L.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–468 (1995).

Erlich, D. J.

M. Rothschild, D. J. Erlich, D. C. Schaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Fedynyshyn, T. H.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Fladd, D.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–468 (1995).

Freiman, S. W.

T. A. Michalske, S. W. Freiman, “Molecular mechanism for stress corrosion in vitreous silica,” J. Am. Ceram. Soc. 66, 284–288 (1983).
[CrossRef]

Friebele, E. J.

J. A. Ruller, E. J. Friebele, “The effect of gamma-irradiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
[CrossRef]

Grenville, A.

V. Liberman, M. R. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. Grenville, “Excimer-laser-induced densification of fused silica: laser-fluence and material-grade effects on the scaling law,” J. Non-Cryst. Solids 244, 159–171 (1999).
[CrossRef]

Griscom, D. L.

T. E. Tsai, D. L. Griscom, “Experimental evidence for excitonic mechanism of defect generation in high-purity silica,” Phys. Rev. Lett. 67, 2517–2520 (1991).
[CrossRef] [PubMed]

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
[CrossRef]

Haller, E. E.

F. Piao, W. G. Oldham, E. E. Haller, “The mechanism of radiation-induced compaction in vitreous silica,” J. Non-Cryst. Solids 276, 61–71 (2000).
[CrossRef]

Hand, D. P.

Hardy, D. E.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Hirano, M.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

Y. Ikuta, S. Kikugawa, M. Hirano, H. Hosono, “Defect formation and structural alteration in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol. B 18, 2891–2895 (2000).
[CrossRef]

Hoover, H. L.

J. P. Williams, Y. Su, W. R. Strzegowski, B. L. Butler, H. L. Hoover, V. O. Altemose, “Direct determination of water in glass,” Ceram. Bull. 55, 524–527 (1976).

Hosono, H.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

Y. Ikuta, S. Kikugawa, M. Hirano, H. Hosono, “Defect formation and structural alteration in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol. B 18, 2891–2895 (2000).
[CrossRef]

H. Hosono, Y. Abe, H. Imai, K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B 44, 12043–12045 (1991).
[CrossRef]

Igarashi, T.

Y. Morimoto, T. Igarashi, T. Okanuma, “Vacuum ultraviolet-induced strain in vitreous silica used for xenon lamp bulbs,” J. Non-Cryst. Solids 179, 260–275 (1994).
[CrossRef]

Ikuta, Y.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

Y. Ikuta, S. Kikugawa, M. Hirano, H. Hosono, “Defect formation and structural alteration in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol. B 18, 2891–2895 (2000).
[CrossRef]

Imai, H.

H. Hosono, Y. Abe, H. Imai, K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B 44, 12043–12045 (1991).
[CrossRef]

Kajihara, K.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

Khotichenko, V. K.

V. K. Khotichenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” J. Appl. Spectrosc. 46, 632–635 (1987).
[CrossRef]

Kikugawa, S.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

Y. Ikuta, S. Kikugawa, M. Hirano, H. Hosono, “Defect formation and structural alteration in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol. B 18, 2891–2895 (2000).
[CrossRef]

Kuksenko, K. N.

V. K. Khotichenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” J. Appl. Spectrosc. 46, 632–635 (1987).
[CrossRef]

Kunz, R. R.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Liberman, V.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

E. M. Wright, M. Mansuripur, V. Liberman, K. Bates, “Spatial pattern of microchannel formation in fused silica irradiated by nanosecond ultraviolet pulses,” Appl. Opt. 38, 5785–5788 (1999).
[CrossRef]

V. Liberman, M. R. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. Grenville, “Excimer-laser-induced densification of fused silica: laser-fluence and material-grade effects on the scaling law,” J. Non-Cryst. Solids 244, 159–171 (1999).
[CrossRef]

Mansuripur, M.

Masui, A.

S. Yonemori, A. Masui, M. Noshiro, “Structural study of quartz glasses doped with fluorine by 19F-NMR,” Yogyo Kyoukai Shi 94, 863–866 (1986).
[CrossRef]

Michalske, T. A.

T. A. Michalske, S. W. Freiman, “Molecular mechanism for stress corrosion in vitreous silica,” J. Am. Ceram. Soc. 66, 284–288 (1983).
[CrossRef]

Mori, S.

S. Mori, “Performance of the ArF scanning exposure tool,” in Optical Microlithography XII, L. Van den Hove, ed., Proc. SPIE3679, 522–529 (1999).
[CrossRef]

Morimoto, Y.

Y. Morimoto, T. Igarashi, T. Okanuma, “Vacuum ultraviolet-induced strain in vitreous silica used for xenon lamp bulbs,” J. Non-Cryst. Solids 179, 260–275 (1994).
[CrossRef]

Noshiro, M.

S. Yonemori, A. Masui, M. Noshiro, “Structural study of quartz glasses doped with fluorine by 19F-NMR,” Yogyo Kyoukai Shi 94, 863–866 (1986).
[CrossRef]

Novak, I. I.

V. K. Khotichenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” J. Appl. Spectrosc. 46, 632–635 (1987).
[CrossRef]

Okanuma, T.

Y. Morimoto, T. Igarashi, T. Okanuma, “Vacuum ultraviolet-induced strain in vitreous silica used for xenon lamp bulbs,” J. Non-Cryst. Solids 179, 260–275 (1994).
[CrossRef]

Oldham, W.

R. Schenker, W. Oldham, “Effects of compaction on 193 nm lithographic system performance,” J. Vac. Sci. Technol. B 14, 3709–3713 (1996).
[CrossRef]

Oldham, W. G.

F. Piao, W. G. Oldham, E. E. Haller, “The mechanism of radiation-induced compaction in vitreous silica,” J. Non-Cryst. Solids 276, 61–71 (2000).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–468 (1995).

Peski, C. V.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

Piao, F.

F. Piao, W. G. Oldham, E. E. Haller, “The mechanism of radiation-induced compaction in vitreous silica,” J. Non-Cryst. Solids 276, 61–71 (2000).
[CrossRef]

Rothschild, M.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

M. Rothschild, D. J. Erlich, D. C. Schaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Rothschild, M. R.

V. Liberman, M. R. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. Grenville, “Excimer-laser-induced densification of fused silica: laser-fluence and material-grade effects on the scaling law,” J. Non-Cryst. Solids 244, 159–171 (1999).
[CrossRef]

Ruller, J. A.

J. A. Ruller, E. J. Friebele, “The effect of gamma-irradiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
[CrossRef]

Russell, P. St. J.

Schaver, D. C.

M. Rothschild, D. J. Erlich, D. C. Schaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Schenker, R.

R. Schenker, W. Oldham, “Effects of compaction on 193 nm lithographic system performance,” J. Vac. Sci. Technol. B 14, 3709–3713 (1996).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–468 (1995).

Schermerhorn, P.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–468 (1995).

Sedlacek, J. H. C.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

V. Liberman, M. R. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. Grenville, “Excimer-laser-induced densification of fused silica: laser-fluence and material-grade effects on the scaling law,” J. Non-Cryst. Solids 244, 159–171 (1999).
[CrossRef]

Seward, T. P.

Shluger, A. L.

V. B. Sulimov, P. V. Sushko, A. H. Edwards, A. L. Shluger, A. M. Stoneham, “Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz,” Phys. Rev. B 66, 24108–24121 (2002).
[CrossRef]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[CrossRef]

Smith, C.

Sochivkin, G. M.

V. K. Khotichenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” J. Appl. Spectrosc. 46, 632–635 (1987).
[CrossRef]

Stoneham, A. M.

V. B. Sulimov, P. V. Sushko, A. H. Edwards, A. L. Shluger, A. M. Stoneham, “Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz,” Phys. Rev. B 66, 24108–24121 (2002).
[CrossRef]

Strzegowski, W. R.

J. P. Williams, Y. Su, W. R. Strzegowski, B. L. Butler, H. L. Hoover, V. O. Altemose, “Direct determination of water in glass,” Ceram. Bull. 55, 524–527 (1976).

Su, Y.

J. P. Williams, Y. Su, W. R. Strzegowski, B. L. Butler, H. L. Hoover, V. O. Altemose, “Direct determination of water in glass,” Ceram. Bull. 55, 524–527 (1976).

Sulimov, V. B.

V. B. Sulimov, P. V. Sushko, A. H. Edwards, A. L. Shluger, A. M. Stoneham, “Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz,” Phys. Rev. B 66, 24108–24121 (2002).
[CrossRef]

Sushko, P. V.

V. B. Sulimov, P. V. Sushko, A. H. Edwards, A. L. Shluger, A. M. Stoneham, “Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz,” Phys. Rev. B 66, 24108–24121 (2002).
[CrossRef]

Tomozawa, M.

A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

Tsai, T. E.

T. E. Tsai, D. L. Griscom, “Experimental evidence for excitonic mechanism of defect generation in high-purity silica,” Phys. Rev. Lett. 67, 2517–2520 (1991).
[CrossRef] [PubMed]

Uttaro, R. S.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

V. Liberman, M. R. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. Grenville, “Excimer-laser-induced densification of fused silica: laser-fluence and material-grade effects on the scaling law,” J. Non-Cryst. Solids 244, 159–171 (1999).
[CrossRef]

Vaidya, H.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–468 (1995).

Vaidya, S.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–468 (1995).

Williams, J. P.

J. P. Williams, Y. Su, W. R. Strzegowski, B. L. Butler, H. L. Hoover, V. O. Altemose, “Direct determination of water in glass,” Ceram. Bull. 55, 524–527 (1976).

Wright, E. M.

Yonemori, S.

S. Yonemori, A. Masui, M. Noshiro, “Structural study of quartz glasses doped with fluorine by 19F-NMR,” Yogyo Kyoukai Shi 94, 863–866 (1986).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Rothschild, D. J. Erlich, D. C. Schaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

Ceram. Bull.

J. P. Williams, Y. Su, W. R. Strzegowski, B. L. Butler, H. L. Hoover, V. O. Altemose, “Direct determination of water in glass,” Ceram. Bull. 55, 524–527 (1976).

J. Am. Ceram. Soc.

T. A. Michalske, S. W. Freiman, “Molecular mechanism for stress corrosion in vitreous silica,” J. Am. Ceram. Soc. 66, 284–288 (1983).
[CrossRef]

J. Appl. Spectrosc.

V. K. Khotichenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” J. Appl. Spectrosc. 46, 632–635 (1987).
[CrossRef]

J. Ceram. Soc. Jpn.

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
[CrossRef]

J. Non-Cryst. Solids

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[CrossRef]

J. A. Ruller, E. J. Friebele, “The effect of gamma-irradiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
[CrossRef]

A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

V. Liberman, M. R. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. Grenville, “Excimer-laser-induced densification of fused silica: laser-fluence and material-grade effects on the scaling law,” J. Non-Cryst. Solids 244, 159–171 (1999).
[CrossRef]

F. Piao, W. G. Oldham, E. E. Haller, “The mechanism of radiation-induced compaction in vitreous silica,” J. Non-Cryst. Solids 276, 61–71 (2000).
[CrossRef]

Y. Morimoto, T. Igarashi, T. Okanuma, “Vacuum ultraviolet-induced strain in vitreous silica used for xenon lamp bulbs,” J. Non-Cryst. Solids 179, 260–275 (1994).
[CrossRef]

B. C. Bunker, “Molecular mechanism for corrosion of silica and silicate glasses,” J. Non-Cryst. Solids 179, 300–308 (1994).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. B

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999).
[CrossRef]

R. Schenker, W. Oldham, “Effects of compaction on 193 nm lithographic system performance,” J. Vac. Sci. Technol. B 14, 3709–3713 (1996).
[CrossRef]

Y. Ikuta, S. Kikugawa, M. Hirano, H. Hosono, “Defect formation and structural alteration in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol. B 18, 2891–2895 (2000).
[CrossRef]

Opt. Lett.

Phys. Rev. B

V. B. Sulimov, P. V. Sushko, A. H. Edwards, A. L. Shluger, A. M. Stoneham, “Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz,” Phys. Rev. B 66, 24108–24121 (2002).
[CrossRef]

H. Hosono, Y. Abe, H. Imai, K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B 44, 12043–12045 (1991).
[CrossRef]

Phys. Rev. Lett.

T. E. Tsai, D. L. Griscom, “Experimental evidence for excitonic mechanism of defect generation in high-purity silica,” Phys. Rev. Lett. 67, 2517–2520 (1991).
[CrossRef] [PubMed]

Yogyo Kyoukai Shi

S. Yonemori, A. Masui, M. Noshiro, “Structural study of quartz glasses doped with fluorine by 19F-NMR,” Yogyo Kyoukai Shi 94, 863–866 (1986).
[CrossRef]

Other

S. Mori, “Performance of the ArF scanning exposure tool,” in Optical Microlithography XII, L. Van den Hove, ed., Proc. SPIE3679, 522–529 (1999).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–468 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Specific volume (V) as a function of the ODC concentration in the DCS samples. Inset shows the dependence of the ODC concentration on the refractive index (n) at 2.0 eV. Dotted and dashed lines show the calculated contributions of the optical absorption (Δn KK ) and the volume change (Δn V ) to n, respectively. The solid line indicates the summation of these two contributions, which shows a good agreement with the measured index (filled squares).

Fig. 2
Fig. 2

(a) Concentrations of the ODC (open circles) and E′ center (open squares) as a function of irradiation dose of the ArF excimer laser in the WET-H sample. Also shown are the same concentrations (ODC, closed circles; E′ center, closed squares) in the DRY-H sample upon F2 laser irradiation. The inset shows the changes in the concentrations of the NBOHC (open diamond) and the E′ center (open square) in the WET sample and those of the NBOHC (closed diamond) and the E′ center (closed square) in the DRY sample. The lines serve as visual guides. (b) Refractive-index change at 2.0 eV (Δn) in each sample as a function of irradiation dose.

Fig. 3
Fig. 3

Correlation between the ODC concentration and the refractive-index change at 2.0 eV due to the volume change (Δn V ) of irradiated samples. Δn V increases linearly with increasing ODC concentration in the WET-H and DRY-H samples, but their dependences are more than 1 order of magnitude larger than that in the DCS samples, denoted by a dotted curve.

Fig. 4
Fig. 4

Changes in the absorption coefficients (Δα) at 6.4 eV for the WET and WET-H samples as a function of the accumulative irradiation dose of ArF excimer laser. The inset shows the same changes at 7.9 eV for the DRY and DRY-H samples subjected to F2 laser irradiation. The absorption coefficients in the WET-H and DRY-H samples increase drastically owing to crack formation, as indicated by the large x’s.

Tables (1)

Tables Icon

Table 1 Samples Used in the Experiment

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δn=ΔnK-K+ΔnV.
ΔnK-K=Ai1-0.5λi-1,
Ai=8.99×10-2αiWiλiEi-1.

Metrics