Abstract

Volume relaxation in polymers and the effect intrinsic to glassy polymers can significantly affect their refractive index over time. Its β rate has been found to be related only to relaxation temperature T and the glass transition temperature of the polymer T g and not to the polymeric chemical structure. Universal values of β have been obtained for polymers and were used to predict the minimum index change related to volume in polymers. The index change is in the range from 7.86 × 10-5 to 5.26 × 10-4 when the T g - T value of polymers is between 90 and 350 °C. These volume-relaxation-induced changes can cause serious deterioration or even failure in corresponding polymer waveguide devices, such as arrayed waveguide gratings and variable optical attenuators, when the T g of a polymer is not sufficiently high. A minimum requirement is therefore suggested for the T g of polymers used to fabricate waveguide devices.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38–45 (2000).
    [CrossRef]
  2. M. Zhou, “Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication,” Opt. Eng. 41, 1631–1643 (2002).
    [CrossRef]
  3. T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
    [CrossRef]
  4. Y. O. Noh, M.-S. Yang, Y. H. Won, W.-Y. Hwang, “PLC-type variable optical attenuator operated at low electrical power,” Electron. Lett. 36, 2032–2033 (2000).
    [CrossRef]
  5. S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, T. Maruno, “Low crosstalk and low loss 2 × 2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
    [CrossRef]
  6. Z. Zhang, I. Liu, G. Xiao, C. P. Grover, “Novel approach to reducing stress-caused birefringence in polymers,” J. Mater. Sci. 39, 1415–1417 (2004).
    [CrossRef]
  7. R. Lytel, G. F. Lipscomb, J. T. Kenney, E. S. Binkley, “Large-scale integration of electro-optic polymer waveguides,” in Polymers for Lightwave and Integrated Optics: Technology and Applications, L. A. Hornak, ed. (Marcel Dekker, New York, 1992).
  8. H. S. Lackritz, T. C. Kowalczyk, Y. C. Lee, D. A. G. Deacon, “Optoelectronic and photonic devices formed of materials which inhibit degradation and failure,” U.S. Patent6,236,774 (22March2001).
  9. J. M. Hutchinson, “Physical aging of polymers,” Prog. Polym. Sci. 20, 703–760 (1995).
    [CrossRef]
  10. C. G. Robertson, G. L. Wilkes, “Refractive index: a probe for monitoring volume relaxation during physical aging of glassy polymers,” Polymer 39, 2129–2133 (1998).
    [CrossRef]
  11. R. A. Orwell, “Densities, coefficients of thermal expansion, and compressibilities of amorphous polymers,” in Physical Properties of Polymers Handbook, J. E. Mark, ed. (American Institute of Physics, Woodbury, N.Y., 1996).
  12. G. T. Murray, ed., Handbook of Materials Selection for Engineering Applications, Vol. 113 of the Mechanical Engineering Series (Marcel Dekker, New York, 1997).
  13. R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
    [CrossRef]
  14. V. N. Morozov, H. Fan, L. Yang, “Variable optical attenuator with thermo-optic control,” U.S. Patent6,208,798 (27March2001).
  15. S. Matsuoka, Relaxation Phenomena in Polymers (Hanser Gardner, New York, 1992).
  16. J. Bartos, J. Müller, J. H. Wendorff, “Physical aging of isotropic and anisotropic polycarbonate,” Polymer 31, 1678–1684 (1990).
    [CrossRef]
  17. R. Greiner, F. R. Schwarzl, “Thermal contraction and volume relaxation of amorphous polymers,” Rheol. Acta 23, 378–395 (1984).
    [CrossRef]
  18. L. C. E. Struik, “Volume relaxation and secondary transitions in amorphous polymers,” Polymer 28, 1869–1875 (1987).
    [CrossRef]
  19. M. K. Smit, C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 22, 236–250 (1996).
  20. M. Lenzi, S. Tebaldini, D. di Mola, S. Brunazzi, L. Cibinetto, “Power control in the photonic domain based on integrated arrays of optical variable attenuators in glass-on-silicon technology,” IEEE J. Sel. Top. Quantum Electron. 5, 1289–1297 (1999).
    [CrossRef]
  21. X. Orignac, J. Ingenhoff, N. Fabricius, “Modeling and properties of an ion-exchanged optical variable attenuator,” in Integrated Optics Devices III, G. C. Righini, S. I. Najafi, eds., Proc. SPIE3620, 220–232 (1999).
    [CrossRef]
  22. Y. P. Handa, J. Roovers, P. Moulinié, “Gas transport properties of substituted PEEKs,” J. Polym. Sci. Part B Polym. Phys. 35, 2355–23262 (1997).
    [CrossRef]
  23. D. S. Pope, G. K. Fleming, W. J. Koros, “Effect of various exposure histories on sorption and dilation in a family of polycarbonates,” Macromolecules 23, 2988–2994 (1990).
    [CrossRef]
  24. S. S. Jordan, W. J. Koros, “A free volume distribution model of gas sorption and dilation in glassy polymers,” Macromolecules 28, 2228–2235 (1995).
    [CrossRef]
  25. Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron Lett. 33, 1945–1947 (1997).
    [CrossRef]

2004 (1)

Z. Zhang, I. Liu, G. Xiao, C. P. Grover, “Novel approach to reducing stress-caused birefringence in polymers,” J. Mater. Sci. 39, 1415–1417 (2004).
[CrossRef]

2002 (1)

M. Zhou, “Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication,” Opt. Eng. 41, 1631–1643 (2002).
[CrossRef]

2000 (3)

Y. O. Noh, M.-S. Yang, Y. H. Won, W.-Y. Hwang, “PLC-type variable optical attenuator operated at low electrical power,” Electron. Lett. 36, 2032–2033 (2000).
[CrossRef]

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, T. Maruno, “Low crosstalk and low loss 2 × 2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[CrossRef]

T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38–45 (2000).
[CrossRef]

1999 (1)

M. Lenzi, S. Tebaldini, D. di Mola, S. Brunazzi, L. Cibinetto, “Power control in the photonic domain based on integrated arrays of optical variable attenuators in glass-on-silicon technology,” IEEE J. Sel. Top. Quantum Electron. 5, 1289–1297 (1999).
[CrossRef]

1998 (1)

C. G. Robertson, G. L. Wilkes, “Refractive index: a probe for monitoring volume relaxation during physical aging of glassy polymers,” Polymer 39, 2129–2133 (1998).
[CrossRef]

1997 (3)

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

Y. P. Handa, J. Roovers, P. Moulinié, “Gas transport properties of substituted PEEKs,” J. Polym. Sci. Part B Polym. Phys. 35, 2355–23262 (1997).
[CrossRef]

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron Lett. 33, 1945–1947 (1997).
[CrossRef]

1996 (1)

M. K. Smit, C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 22, 236–250 (1996).

1995 (2)

S. S. Jordan, W. J. Koros, “A free volume distribution model of gas sorption and dilation in glassy polymers,” Macromolecules 28, 2228–2235 (1995).
[CrossRef]

J. M. Hutchinson, “Physical aging of polymers,” Prog. Polym. Sci. 20, 703–760 (1995).
[CrossRef]

1992 (1)

R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

1990 (2)

J. Bartos, J. Müller, J. H. Wendorff, “Physical aging of isotropic and anisotropic polycarbonate,” Polymer 31, 1678–1684 (1990).
[CrossRef]

D. S. Pope, G. K. Fleming, W. J. Koros, “Effect of various exposure histories on sorption and dilation in a family of polycarbonates,” Macromolecules 23, 2988–2994 (1990).
[CrossRef]

1987 (1)

L. C. E. Struik, “Volume relaxation and secondary transitions in amorphous polymers,” Polymer 28, 1869–1875 (1987).
[CrossRef]

1984 (1)

R. Greiner, F. R. Schwarzl, “Thermal contraction and volume relaxation of amorphous polymers,” Rheol. Acta 23, 378–395 (1984).
[CrossRef]

Bartos, J.

J. Bartos, J. Müller, J. H. Wendorff, “Physical aging of isotropic and anisotropic polycarbonate,” Polymer 31, 1678–1684 (1990).
[CrossRef]

Binkley, E. S.

R. Lytel, G. F. Lipscomb, J. T. Kenney, E. S. Binkley, “Large-scale integration of electro-optic polymer waveguides,” in Polymers for Lightwave and Integrated Optics: Technology and Applications, L. A. Hornak, ed. (Marcel Dekker, New York, 1992).

Brunazzi, S.

M. Lenzi, S. Tebaldini, D. di Mola, S. Brunazzi, L. Cibinetto, “Power control in the photonic domain based on integrated arrays of optical variable attenuators in glass-on-silicon technology,” IEEE J. Sel. Top. Quantum Electron. 5, 1289–1297 (1999).
[CrossRef]

Cibinetto, L.

M. Lenzi, S. Tebaldini, D. di Mola, S. Brunazzi, L. Cibinetto, “Power control in the photonic domain based on integrated arrays of optical variable attenuators in glass-on-silicon technology,” IEEE J. Sel. Top. Quantum Electron. 5, 1289–1297 (1999).
[CrossRef]

Deacon, D. A. G.

H. S. Lackritz, T. C. Kowalczyk, Y. C. Lee, D. A. G. Deacon, “Optoelectronic and photonic devices formed of materials which inhibit degradation and failure,” U.S. Patent6,236,774 (22March2001).

di Mola, D.

M. Lenzi, S. Tebaldini, D. di Mola, S. Brunazzi, L. Cibinetto, “Power control in the photonic domain based on integrated arrays of optical variable attenuators in glass-on-silicon technology,” IEEE J. Sel. Top. Quantum Electron. 5, 1289–1297 (1999).
[CrossRef]

Fabricius, N.

X. Orignac, J. Ingenhoff, N. Fabricius, “Modeling and properties of an ion-exchanged optical variable attenuator,” in Integrated Optics Devices III, G. C. Righini, S. I. Najafi, eds., Proc. SPIE3620, 220–232 (1999).
[CrossRef]

Fan, H.

V. N. Morozov, H. Fan, L. Yang, “Variable optical attenuator with thermo-optic control,” U.S. Patent6,208,798 (27March2001).

Fleming, G. K.

D. S. Pope, G. K. Fleming, W. J. Koros, “Effect of various exposure histories on sorption and dilation in a family of polycarbonates,” Macromolecules 23, 2988–2994 (1990).
[CrossRef]

Greiner, R.

R. Greiner, F. R. Schwarzl, “Thermal contraction and volume relaxation of amorphous polymers,” Rheol. Acta 23, 378–395 (1984).
[CrossRef]

Grover, C. P.

Z. Zhang, I. Liu, G. Xiao, C. P. Grover, “Novel approach to reducing stress-caused birefringence in polymers,” J. Mater. Sci. 39, 1415–1417 (2004).
[CrossRef]

Hanawa, F.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron Lett. 33, 1945–1947 (1997).
[CrossRef]

Handa, Y. P.

Y. P. Handa, J. Roovers, P. Moulinié, “Gas transport properties of substituted PEEKs,” J. Polym. Sci. Part B Polym. Phys. 35, 2355–23262 (1997).
[CrossRef]

Hattori, K.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron Lett. 33, 1945–1947 (1997).
[CrossRef]

Hutchinson, J. M.

J. M. Hutchinson, “Physical aging of polymers,” Prog. Polym. Sci. 20, 703–760 (1995).
[CrossRef]

Hwang, W.-Y.

Y. O. Noh, M.-S. Yang, Y. H. Won, W.-Y. Hwang, “PLC-type variable optical attenuator operated at low electrical power,” Electron. Lett. 36, 2032–2033 (2000).
[CrossRef]

Ingenhoff, J.

X. Orignac, J. Ingenhoff, N. Fabricius, “Modeling and properties of an ion-exchanged optical variable attenuator,” in Integrated Optics Devices III, G. C. Righini, S. I. Najafi, eds., Proc. SPIE3620, 220–232 (1999).
[CrossRef]

Inoue, Y.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron Lett. 33, 1945–1947 (1997).
[CrossRef]

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

Jordan, S. S.

S. S. Jordan, W. J. Koros, “A free volume distribution model of gas sorption and dilation in glassy polymers,” Macromolecules 28, 2228–2235 (1995).
[CrossRef]

Kaneko, A.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron Lett. 33, 1945–1947 (1997).
[CrossRef]

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

Katoh, Y.

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, T. Maruno, “Low crosstalk and low loss 2 × 2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[CrossRef]

Kenney, J. T.

R. Lytel, G. F. Lipscomb, J. T. Kenney, E. S. Binkley, “Large-scale integration of electro-optic polymer waveguides,” in Polymers for Lightwave and Integrated Optics: Technology and Applications, L. A. Hornak, ed. (Marcel Dekker, New York, 1992).

Koros, W. J.

S. S. Jordan, W. J. Koros, “A free volume distribution model of gas sorption and dilation in glassy polymers,” Macromolecules 28, 2228–2235 (1995).
[CrossRef]

D. S. Pope, G. K. Fleming, W. J. Koros, “Effect of various exposure histories on sorption and dilation in a family of polycarbonates,” Macromolecules 23, 2988–2994 (1990).
[CrossRef]

Kowalczyk, T. C.

H. S. Lackritz, T. C. Kowalczyk, Y. C. Lee, D. A. G. Deacon, “Optoelectronic and photonic devices formed of materials which inhibit degradation and failure,” U.S. Patent6,236,774 (22March2001).

Kurihara, T.

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, T. Maruno, “Low crosstalk and low loss 2 × 2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[CrossRef]

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

Lackritz, H. S.

H. S. Lackritz, T. C. Kowalczyk, Y. C. Lee, D. A. G. Deacon, “Optoelectronic and photonic devices formed of materials which inhibit degradation and failure,” U.S. Patent6,236,774 (22March2001).

Lee, T. C.

R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

Lee, Y. C.

H. S. Lackritz, T. C. Kowalczyk, Y. C. Lee, D. A. G. Deacon, “Optoelectronic and photonic devices formed of materials which inhibit degradation and failure,” U.S. Patent6,236,774 (22March2001).

Lenzi, M.

M. Lenzi, S. Tebaldini, D. di Mola, S. Brunazzi, L. Cibinetto, “Power control in the photonic domain based on integrated arrays of optical variable attenuators in glass-on-silicon technology,” IEEE J. Sel. Top. Quantum Electron. 5, 1289–1297 (1999).
[CrossRef]

Lipscomb, G. F.

R. Lytel, G. F. Lipscomb, J. T. Kenney, E. S. Binkley, “Large-scale integration of electro-optic polymer waveguides,” in Polymers for Lightwave and Integrated Optics: Technology and Applications, L. A. Hornak, ed. (Marcel Dekker, New York, 1992).

Liu, I.

Z. Zhang, I. Liu, G. Xiao, C. P. Grover, “Novel approach to reducing stress-caused birefringence in polymers,” J. Mater. Sci. 39, 1415–1417 (2004).
[CrossRef]

Lytel, R.

R. Lytel, G. F. Lipscomb, J. T. Kenney, E. S. Binkley, “Large-scale integration of electro-optic polymer waveguides,” in Polymers for Lightwave and Integrated Optics: Technology and Applications, L. A. Hornak, ed. (Marcel Dekker, New York, 1992).

Maruno, T.

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, T. Maruno, “Low crosstalk and low loss 2 × 2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[CrossRef]

Matsuoka, S.

S. Matsuoka, Relaxation Phenomena in Polymers (Hanser Gardner, New York, 1992).

Miya, T.

T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38–45 (2000).
[CrossRef]

Mohapatra, S. K.

R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

Morozov, V. N.

V. N. Morozov, H. Fan, L. Yang, “Variable optical attenuator with thermo-optic control,” U.S. Patent6,208,798 (27March2001).

Moshrefzadeh, R. S.

R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

Moulinié, P.

Y. P. Handa, J. Roovers, P. Moulinié, “Gas transport properties of substituted PEEKs,” J. Polym. Sci. Part B Polym. Phys. 35, 2355–23262 (1997).
[CrossRef]

Müller, J.

J. Bartos, J. Müller, J. H. Wendorff, “Physical aging of isotropic and anisotropic polycarbonate,” Polymer 31, 1678–1684 (1990).
[CrossRef]

Noh, Y. O.

Y. O. Noh, M.-S. Yang, Y. H. Won, W.-Y. Hwang, “PLC-type variable optical attenuator operated at low electrical power,” Electron. Lett. 36, 2032–2033 (2000).
[CrossRef]

Ooba, N.

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, T. Maruno, “Low crosstalk and low loss 2 × 2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[CrossRef]

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

Orignac, X.

X. Orignac, J. Ingenhoff, N. Fabricius, “Modeling and properties of an ion-exchanged optical variable attenuator,” in Integrated Optics Devices III, G. C. Righini, S. I. Najafi, eds., Proc. SPIE3620, 220–232 (1999).
[CrossRef]

Orwell, R. A.

R. A. Orwell, “Densities, coefficients of thermal expansion, and compressibilities of amorphous polymers,” in Physical Properties of Polymers Handbook, J. E. Mark, ed. (American Institute of Physics, Woodbury, N.Y., 1996).

Pope, D. S.

D. S. Pope, G. K. Fleming, W. J. Koros, “Effect of various exposure histories on sorption and dilation in a family of polycarbonates,” Macromolecules 23, 2988–2994 (1990).
[CrossRef]

Radcliffe, M. D.

R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

Robertson, C. G.

C. G. Robertson, G. L. Wilkes, “Refractive index: a probe for monitoring volume relaxation during physical aging of glassy polymers,” Polymer 39, 2129–2133 (1998).
[CrossRef]

Roovers, J.

Y. P. Handa, J. Roovers, P. Moulinié, “Gas transport properties of substituted PEEKs,” J. Polym. Sci. Part B Polym. Phys. 35, 2355–23262 (1997).
[CrossRef]

Schwarzl, F. R.

R. Greiner, F. R. Schwarzl, “Thermal contraction and volume relaxation of amorphous polymers,” Rheol. Acta 23, 378–395 (1984).
[CrossRef]

Smit, M. K.

M. K. Smit, C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 22, 236–250 (1996).

Struik, L. C. E.

L. C. E. Struik, “Volume relaxation and secondary transitions in amorphous polymers,” Polymer 28, 1869–1875 (1987).
[CrossRef]

Sumida, S.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron Lett. 33, 1945–1947 (1997).
[CrossRef]

Takahashi, H.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron Lett. 33, 1945–1947 (1997).
[CrossRef]

Tebaldini, S.

M. Lenzi, S. Tebaldini, D. di Mola, S. Brunazzi, L. Cibinetto, “Power control in the photonic domain based on integrated arrays of optical variable attenuators in glass-on-silicon technology,” IEEE J. Sel. Top. Quantum Electron. 5, 1289–1297 (1999).
[CrossRef]

Toyoda, S.

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, T. Maruno, “Low crosstalk and low loss 2 × 2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[CrossRef]

Van Dam, C.

M. K. Smit, C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 22, 236–250 (1996).

Watanabe, T.

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

Wendorff, J. H.

J. Bartos, J. Müller, J. H. Wendorff, “Physical aging of isotropic and anisotropic polycarbonate,” Polymer 31, 1678–1684 (1990).
[CrossRef]

Wilkes, G. L.

C. G. Robertson, G. L. Wilkes, “Refractive index: a probe for monitoring volume relaxation during physical aging of glassy polymers,” Polymer 39, 2129–2133 (1998).
[CrossRef]

Won, Y. H.

Y. O. Noh, M.-S. Yang, Y. H. Won, W.-Y. Hwang, “PLC-type variable optical attenuator operated at low electrical power,” Electron. Lett. 36, 2032–2033 (2000).
[CrossRef]

Xiao, G.

Z. Zhang, I. Liu, G. Xiao, C. P. Grover, “Novel approach to reducing stress-caused birefringence in polymers,” J. Mater. Sci. 39, 1415–1417 (2004).
[CrossRef]

Yang, L.

V. N. Morozov, H. Fan, L. Yang, “Variable optical attenuator with thermo-optic control,” U.S. Patent6,208,798 (27March2001).

Yang, M.-S.

Y. O. Noh, M.-S. Yang, Y. H. Won, W.-Y. Hwang, “PLC-type variable optical attenuator operated at low electrical power,” Electron. Lett. 36, 2032–2033 (2000).
[CrossRef]

Zhang, Z.

Z. Zhang, I. Liu, G. Xiao, C. P. Grover, “Novel approach to reducing stress-caused birefringence in polymers,” J. Mater. Sci. 39, 1415–1417 (2004).
[CrossRef]

Zhou, M.

M. Zhou, “Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication,” Opt. Eng. 41, 1631–1643 (2002).
[CrossRef]

Electron Lett. (1)

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron Lett. 33, 1945–1947 (1997).
[CrossRef]

Electron. Lett. (3)

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymeric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

Y. O. Noh, M.-S. Yang, Y. H. Won, W.-Y. Hwang, “PLC-type variable optical attenuator operated at low electrical power,” Electron. Lett. 36, 2032–2033 (2000).
[CrossRef]

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, T. Maruno, “Low crosstalk and low loss 2 × 2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38–45 (2000).
[CrossRef]

M. K. Smit, C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 22, 236–250 (1996).

M. Lenzi, S. Tebaldini, D. di Mola, S. Brunazzi, L. Cibinetto, “Power control in the photonic domain based on integrated arrays of optical variable attenuators in glass-on-silicon technology,” IEEE J. Sel. Top. Quantum Electron. 5, 1289–1297 (1999).
[CrossRef]

J. Lightwave Technol. (1)

R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

J. Mater. Sci. (1)

Z. Zhang, I. Liu, G. Xiao, C. P. Grover, “Novel approach to reducing stress-caused birefringence in polymers,” J. Mater. Sci. 39, 1415–1417 (2004).
[CrossRef]

J. Polym. Sci. Part B Polym. Phys. (1)

Y. P. Handa, J. Roovers, P. Moulinié, “Gas transport properties of substituted PEEKs,” J. Polym. Sci. Part B Polym. Phys. 35, 2355–23262 (1997).
[CrossRef]

Macromolecules (2)

D. S. Pope, G. K. Fleming, W. J. Koros, “Effect of various exposure histories on sorption and dilation in a family of polycarbonates,” Macromolecules 23, 2988–2994 (1990).
[CrossRef]

S. S. Jordan, W. J. Koros, “A free volume distribution model of gas sorption and dilation in glassy polymers,” Macromolecules 28, 2228–2235 (1995).
[CrossRef]

Opt. Eng. (1)

M. Zhou, “Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication,” Opt. Eng. 41, 1631–1643 (2002).
[CrossRef]

Polymer (3)

C. G. Robertson, G. L. Wilkes, “Refractive index: a probe for monitoring volume relaxation during physical aging of glassy polymers,” Polymer 39, 2129–2133 (1998).
[CrossRef]

J. Bartos, J. Müller, J. H. Wendorff, “Physical aging of isotropic and anisotropic polycarbonate,” Polymer 31, 1678–1684 (1990).
[CrossRef]

L. C. E. Struik, “Volume relaxation and secondary transitions in amorphous polymers,” Polymer 28, 1869–1875 (1987).
[CrossRef]

Prog. Polym. Sci. (1)

J. M. Hutchinson, “Physical aging of polymers,” Prog. Polym. Sci. 20, 703–760 (1995).
[CrossRef]

Rheol. Acta (1)

R. Greiner, F. R. Schwarzl, “Thermal contraction and volume relaxation of amorphous polymers,” Rheol. Acta 23, 378–395 (1984).
[CrossRef]

Other (7)

V. N. Morozov, H. Fan, L. Yang, “Variable optical attenuator with thermo-optic control,” U.S. Patent6,208,798 (27March2001).

S. Matsuoka, Relaxation Phenomena in Polymers (Hanser Gardner, New York, 1992).

X. Orignac, J. Ingenhoff, N. Fabricius, “Modeling and properties of an ion-exchanged optical variable attenuator,” in Integrated Optics Devices III, G. C. Righini, S. I. Najafi, eds., Proc. SPIE3620, 220–232 (1999).
[CrossRef]

R. A. Orwell, “Densities, coefficients of thermal expansion, and compressibilities of amorphous polymers,” in Physical Properties of Polymers Handbook, J. E. Mark, ed. (American Institute of Physics, Woodbury, N.Y., 1996).

G. T. Murray, ed., Handbook of Materials Selection for Engineering Applications, Vol. 113 of the Mechanical Engineering Series (Marcel Dekker, New York, 1997).

R. Lytel, G. F. Lipscomb, J. T. Kenney, E. S. Binkley, “Large-scale integration of electro-optic polymer waveguides,” in Polymers for Lightwave and Integrated Optics: Technology and Applications, L. A. Hornak, ed. (Marcel Dekker, New York, 1992).

H. S. Lackritz, T. C. Kowalczyk, Y. C. Lee, D. A. G. Deacon, “Optoelectronic and photonic devices formed of materials which inhibit degradation and failure,” U.S. Patent6,236,774 (22March2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Volume relaxation rate β of various polymers as a function of supercooling temperature. T is the relaxation temperature and T g is the glass transition temperature. Experimental data were collected from the indicated references.

Fig. 2
Fig. 2

Refractive-index change in polymers as a function of relaxation time and volume relaxation rate.

Fig. 3
Fig. 3

Schematic structure of the evaluated waveguide devices: (a) AWG and (b) MZI type VOA.

Fig. 4
Fig. 4

Effect of a polymeric-index change on the central wavelength shift of an AWG.

Fig. 5
Fig. 5

Effect of a polymeric index change on the phase shift and zero-attenuation loss of a VOA.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β=1VVlog tP,T=-nlog tP,TTnP,t1VVTP,t,
nlog tP,T=-βnTP,tα.
λc=nΔL/m,
P=10 log121+cosΔΦ,
ΔΦ=2πλ0 Ln-nref,

Metrics