Abstract

It is shown that IMG (interferometric monitoring of greenhouse gases) spectra recorded over African and Arabian deserts clearly contain the fingerprint of quartz-rich soils. We illustrate how this spectral signature can be exploited to devise a suitable cloud-detection scheme to identify which infrared observations are affected by clouds. As a by-product, the scheme also allows one to identify the most likely underlying emitting surface type and provides a suitable first guess for the surface emissivity to be used, e.g., for the retrieval of geophysical parameters from high-spectral-resolution infrared radiance from space. The analysis has focused on African deserts because of their intrinsic relevance to numerical weather prediction and Earth’s climate. Desert areas, like oceans, are poorly covered by the world meteorological radiosonde network and therefore are geographical regions for which the global coverage capability of satellites soundings is expected to provide better initializations for numerical weather prediction than are now available. Application of the cloud-detection scheme to IMG spectra has been considered, which demonstrates the good performance of the method.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
    [Crossref]
  2. B. W. Meeson, F. E. Corprew, J. M. P. McManus, D. M. Myers, J. W. Closs, K. J. Sun, D. J. Sunday, P. J. Sellers, “International satellite land surface climatology project (ISLSCP) initiative I CD-ROM set,” NASA Technical Report (NASA, Greenbelt, Md., 1995), CD.
  3. W. C. Snyder, Z. Whan, Y. Zhang, Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
    [Crossref]
  4. J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
    [Crossref]
  5. J. W. Salisbury, “Mid-infrared spectroscopy: laboratory data,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. M. Pieters, P. J. Englert, eds. (Cambridge U. Press, London, 1993).
  6. M. Shimoda, H. Oaku, Y. Mitomi, H. Murakami, H. Kawamura, “Calibration of the ocean color and temperature scanner,” IEEE Trans. Geosci. Remote Sens. 37, 1484–1495 (1999).
    [Crossref]
  7. T. Phulpin, F. Cayla, G. Chalon, D. Diebel, D. Schlüssel, “IASI onboard METOP: project status and scientific preparation,” in Proceedings of the 12th International TOVS Study Conference (2002 proceedings available from J. Le Marshall, Bureau of Meteorology Research Centre, GPO 1289K, Melbourne, Vic. 3001, Australia).
  8. C. Serio, A. M. Lubrano, F. Romano, H. Shimoda, “Cloud detection over sea surface using autocorrelation functions of upwelling infrared spectra in the 800–900 cm-1 window region,” Appl. Opt. 39, 3565–3572 (2000).
    [Crossref]
  9. G. Masiello, M. Matricardi, R. Rizzi, C. Serio, “Homomorphism between clear-sky and cloudy spectra in the 800–900 cm-1 window region,” Appl. Opt. 41, 965–973 (2002).
    [Crossref] [PubMed]

2002 (1)

2000 (1)

1999 (2)

M. Shimoda, H. Oaku, Y. Mitomi, H. Murakami, H. Kawamura, “Calibration of the ocean color and temperature scanner,” IEEE Trans. Geosci. Remote Sens. 37, 1484–1495 (1999).
[Crossref]

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[Crossref]

1998 (1)

W. C. Snyder, Z. Whan, Y. Zhang, Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
[Crossref]

1992 (1)

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
[Crossref]

Cayla, F.

T. Phulpin, F. Cayla, G. Chalon, D. Diebel, D. Schlüssel, “IASI onboard METOP: project status and scientific preparation,” in Proceedings of the 12th International TOVS Study Conference (2002 proceedings available from J. Le Marshall, Bureau of Meteorology Research Centre, GPO 1289K, Melbourne, Vic. 3001, Australia).

Chalon, G.

T. Phulpin, F. Cayla, G. Chalon, D. Diebel, D. Schlüssel, “IASI onboard METOP: project status and scientific preparation,” in Proceedings of the 12th International TOVS Study Conference (2002 proceedings available from J. Le Marshall, Bureau of Meteorology Research Centre, GPO 1289K, Melbourne, Vic. 3001, Australia).

Closs, J. W.

B. W. Meeson, F. E. Corprew, J. M. P. McManus, D. M. Myers, J. W. Closs, K. J. Sun, D. J. Sunday, P. J. Sellers, “International satellite land surface climatology project (ISLSCP) initiative I CD-ROM set,” NASA Technical Report (NASA, Greenbelt, Md., 1995), CD.

Corprew, F. E.

B. W. Meeson, F. E. Corprew, J. M. P. McManus, D. M. Myers, J. W. Closs, K. J. Sun, D. J. Sunday, P. J. Sellers, “International satellite land surface climatology project (ISLSCP) initiative I CD-ROM set,” NASA Technical Report (NASA, Greenbelt, Md., 1995), CD.

D’Aria, D. M.

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
[Crossref]

Diebel, D.

T. Phulpin, F. Cayla, G. Chalon, D. Diebel, D. Schlüssel, “IASI onboard METOP: project status and scientific preparation,” in Proceedings of the 12th International TOVS Study Conference (2002 proceedings available from J. Le Marshall, Bureau of Meteorology Research Centre, GPO 1289K, Melbourne, Vic. 3001, Australia).

Feng, Y.-Z.

W. C. Snyder, Z. Whan, Y. Zhang, Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
[Crossref]

Kawamura, H.

M. Shimoda, H. Oaku, Y. Mitomi, H. Murakami, H. Kawamura, “Calibration of the ocean color and temperature scanner,” IEEE Trans. Geosci. Remote Sens. 37, 1484–1495 (1999).
[Crossref]

Kobayashi, H.

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[Crossref]

Kondo, K.

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[Crossref]

Lubrano, A. M.

Masiello, G.

Matricardi, M.

McManus, J. M. P.

B. W. Meeson, F. E. Corprew, J. M. P. McManus, D. M. Myers, J. W. Closs, K. J. Sun, D. J. Sunday, P. J. Sellers, “International satellite land surface climatology project (ISLSCP) initiative I CD-ROM set,” NASA Technical Report (NASA, Greenbelt, Md., 1995), CD.

Meeson, B. W.

B. W. Meeson, F. E. Corprew, J. M. P. McManus, D. M. Myers, J. W. Closs, K. J. Sun, D. J. Sunday, P. J. Sellers, “International satellite land surface climatology project (ISLSCP) initiative I CD-ROM set,” NASA Technical Report (NASA, Greenbelt, Md., 1995), CD.

Mitomi, Y.

M. Shimoda, H. Oaku, Y. Mitomi, H. Murakami, H. Kawamura, “Calibration of the ocean color and temperature scanner,” IEEE Trans. Geosci. Remote Sens. 37, 1484–1495 (1999).
[Crossref]

Murakami, H.

M. Shimoda, H. Oaku, Y. Mitomi, H. Murakami, H. Kawamura, “Calibration of the ocean color and temperature scanner,” IEEE Trans. Geosci. Remote Sens. 37, 1484–1495 (1999).
[Crossref]

Myers, D. M.

B. W. Meeson, F. E. Corprew, J. M. P. McManus, D. M. Myers, J. W. Closs, K. J. Sun, D. J. Sunday, P. J. Sellers, “International satellite land surface climatology project (ISLSCP) initiative I CD-ROM set,” NASA Technical Report (NASA, Greenbelt, Md., 1995), CD.

Oaku, H.

M. Shimoda, H. Oaku, Y. Mitomi, H. Murakami, H. Kawamura, “Calibration of the ocean color and temperature scanner,” IEEE Trans. Geosci. Remote Sens. 37, 1484–1495 (1999).
[Crossref]

Phulpin, T.

T. Phulpin, F. Cayla, G. Chalon, D. Diebel, D. Schlüssel, “IASI onboard METOP: project status and scientific preparation,” in Proceedings of the 12th International TOVS Study Conference (2002 proceedings available from J. Le Marshall, Bureau of Meteorology Research Centre, GPO 1289K, Melbourne, Vic. 3001, Australia).

Rizzi, R.

Romano, F.

Salisbury, J. W.

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
[Crossref]

J. W. Salisbury, “Mid-infrared spectroscopy: laboratory data,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. M. Pieters, P. J. Englert, eds. (Cambridge U. Press, London, 1993).

Schlüssel, D.

T. Phulpin, F. Cayla, G. Chalon, D. Diebel, D. Schlüssel, “IASI onboard METOP: project status and scientific preparation,” in Proceedings of the 12th International TOVS Study Conference (2002 proceedings available from J. Le Marshall, Bureau of Meteorology Research Centre, GPO 1289K, Melbourne, Vic. 3001, Australia).

Sellers, P. J.

B. W. Meeson, F. E. Corprew, J. M. P. McManus, D. M. Myers, J. W. Closs, K. J. Sun, D. J. Sunday, P. J. Sellers, “International satellite land surface climatology project (ISLSCP) initiative I CD-ROM set,” NASA Technical Report (NASA, Greenbelt, Md., 1995), CD.

Serio, C.

Shimoda, H.

Shimoda, M.

M. Shimoda, H. Oaku, Y. Mitomi, H. Murakami, H. Kawamura, “Calibration of the ocean color and temperature scanner,” IEEE Trans. Geosci. Remote Sens. 37, 1484–1495 (1999).
[Crossref]

Shimota, A.

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[Crossref]

Snyder, W. C.

W. C. Snyder, Z. Whan, Y. Zhang, Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
[Crossref]

Sun, K. J.

B. W. Meeson, F. E. Corprew, J. M. P. McManus, D. M. Myers, J. W. Closs, K. J. Sun, D. J. Sunday, P. J. Sellers, “International satellite land surface climatology project (ISLSCP) initiative I CD-ROM set,” NASA Technical Report (NASA, Greenbelt, Md., 1995), CD.

Sunday, D. J.

B. W. Meeson, F. E. Corprew, J. M. P. McManus, D. M. Myers, J. W. Closs, K. J. Sun, D. J. Sunday, P. J. Sellers, “International satellite land surface climatology project (ISLSCP) initiative I CD-ROM set,” NASA Technical Report (NASA, Greenbelt, Md., 1995), CD.

Uehara, Y.

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[Crossref]

Whan, Z.

W. C. Snyder, Z. Whan, Y. Zhang, Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
[Crossref]

Yoshida, I.

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[Crossref]

Yoshigahara, C.

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[Crossref]

Zhang, Y.

W. C. Snyder, Z. Whan, Y. Zhang, Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
[Crossref]

Appl. Opt. (2)

IEEE Trans. Geosci. Remote Sens. (2)

M. Shimoda, H. Oaku, Y. Mitomi, H. Murakami, H. Kawamura, “Calibration of the ocean color and temperature scanner,” IEEE Trans. Geosci. Remote Sens. 37, 1484–1495 (1999).
[Crossref]

H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37, 1496–1507 (1999).
[Crossref]

Int. J. Remote Sens. (1)

W. C. Snyder, Z. Whan, Y. Zhang, Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
[Crossref]

Remote Sens. Environ. (1)

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
[Crossref]

Other (3)

J. W. Salisbury, “Mid-infrared spectroscopy: laboratory data,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. M. Pieters, P. J. Englert, eds. (Cambridge U. Press, London, 1993).

B. W. Meeson, F. E. Corprew, J. M. P. McManus, D. M. Myers, J. W. Closs, K. J. Sun, D. J. Sunday, P. J. Sellers, “International satellite land surface climatology project (ISLSCP) initiative I CD-ROM set,” NASA Technical Report (NASA, Greenbelt, Md., 1995), CD.

T. Phulpin, F. Cayla, G. Chalon, D. Diebel, D. Schlüssel, “IASI onboard METOP: project status and scientific preparation,” in Proceedings of the 12th International TOVS Study Conference (2002 proceedings available from J. Le Marshall, Bureau of Meteorology Research Centre, GPO 1289K, Melbourne, Vic. 3001, Australia).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Field of view geometry of IMG, showing the footprint of the three bands (adapted from the IMG Technical Report available at http://www.eorc.nasda.go.jp/AtmChem/IMG/).

Fig. 2
Fig. 2

Map of the five IMG sequences used in this analysis. The IMG footprint is represented on the map by a dot; therefore each IMG sequence is represented by a series of six dots.

Fig. 3
Fig. 3

Example of OCTS frames colocated with the IMG footprint. The brightest box refers to the IMG band 1, the box in the middle is the footprint of band 2, and the third box refers to IMG band 3. The sequence of observations is from 1 to 6, top to bottom. The underlying surface is a desert area in the southeast part of the Sahara desert.

Fig. 4
Fig. 4

Spectral emissivity for ultisols (see Ref. 2).

Fig. 5
Fig. 5

Example of IMG spectrum recorded over the Arabian desert.

Fig. 6
Fig. 6

Spectral emissivity curves for the various types of bare soil (see Ref. 2).

Fig. 7
Fig. 7

Block diagram of the cloud-detection scheme based on the strength of the bare soil spectral fingerprint in the atmospheric window.

Fig. 8
Fig. 8

Results of cloud detection for IMG sequence 165824. The left-hand side of the figure shows the six spectra in the atmospheric window 800–1200 cm-1, with the cloud-detection results summarized in the legend: clear means that a clear-sky sounding has been detected; unclassified indicates the presence of clouds or a surface that does not match the spectral properties of the soils included in the library. The results shown in the legend may be compared with the scene quality (clear or cloudy) as shown by the six OCTS frames (right-hand side of the figure) colocated with the position of the IMG footprints (observation 1 is at the top, 6 at the bottom).

Fig. 9
Fig. 9

As Fig. 8, but for IMG sequence 187234.

Fig. 10
Fig. 10

As Fig. 8, but for IMG sequence 208734.

Fig. 11
Fig. 11

As Fig. 8, but for IMG sequence 230234.

Fig. 12
Fig. 12

As Fig. 8, but for IMG sequence 210132.

Tables (1)

Tables Icon

Table 1 IMG Sequences Analyzed

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ1=819.25, σ2=916.25, σ3=1072.50, σ4=1091.75, σ5=1122.00, σ6=1141.75, σ7=1157.75, σ8=1176.25, σ9=1177.00.
Sσ=στσBTg,
R2=covT, TovarTvarTo1/2,

Metrics