Abstract

Photonic crystal fibers are normally holey silica fibers, which are opaque in the mid- and far-infrared. We have fabricated novel fibers by multiple extrusions of silver halide crystalline materials, which are highly transparent in the mid-infrared. These fibers are composed of two solid materials; The core consists of pure AgBr, and the cladding includes AgCl fiberoptic elements arranged in two concentric hexagonal rings around the core. Flexible fibers of outer diameter 1 mm and length of ∼1 m were fabricated, and their optical properties were measured. These fibers exhibited core-clad behavior and would be extremely useful for IR laser power transmission, IR radiometry, and IR spectroscopy.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, “Photonic crystals: semiconductors of light,” Sci. Am. 285, 47–55 (2001).
    [CrossRef]
  3. T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  4. J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. Mater. Devices Syst. 5, 305–330 (1999).
    [CrossRef]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Briks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  6. J. C. Knight, T. A. Brinks, R. F. Cregan, P. St. J. Russell, J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron Lett. 34, 1347–1349 (1998).
    [CrossRef]
  7. D. Mogilevtsev, T. A. Briks, P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
    [CrossRef]
  8. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef] [PubMed]
  9. E. Rave, K. Roodenko, A. Katzir, “Infrared photonic crystal fiber,” Appl. Phys. Lett. 83, 1912–1914 (2003).
    [CrossRef]
  10. St. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  11. M. Qiu, “Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,” Microwave Opt. Technol. Lett. 30, 327–330 (2001).
    [CrossRef]
  12. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341–348 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  13. A. German, A. Katzir, “Fatigue of mixed silver halide polycrystalline optical fibers,” J. Mater. Sci. 31, 5109–5112 (1996).
    [CrossRef]
  14. D. Bunimovich, A. Katzir, “Dielectric properties of silver halide and potassium halide crystals,” Appl. Opt. 32, 2045–2048 (1993).
    [CrossRef] [PubMed]
  15. A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 823–833 (1988).
    [CrossRef]
  16. I. Paiss, F. Moser, A. Katzir, “Properties of silver halide core-clad fibers and the use of fiber bundle for thermal imaging,” Fiber Integr. Opt. 10, 275–290 (1991).
    [CrossRef]
  17. P. Ephrat, K. Roodenko, L. Nagli, A. Katzir, “Scanning near-field infrared microscopy based on tappered silver-halide probes,” Appl. Phys. Lett. 84, 637–639 (2004).
    [CrossRef]
  18. D. Ferrarini, L. Vincetti, M. Zoboli, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314–1319 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  19. I. Paiss, D. Bunimovich, A. Katzir, “Evanescent-wave infrared spectroscopy of solid materials using deformable silver-halide optical fibers,” Appl. Opt. 32, 5867–5871 (1993).
    [CrossRef] [PubMed]
  20. N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094–1096 (2002).
    [CrossRef]

2004 (1)

P. Ephrat, K. Roodenko, L. Nagli, A. Katzir, “Scanning near-field infrared microscopy based on tappered silver-halide probes,” Appl. Phys. Lett. 84, 637–639 (2004).
[CrossRef]

2003 (2)

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

E. Rave, K. Roodenko, A. Katzir, “Infrared photonic crystal fiber,” Appl. Phys. Lett. 83, 1912–1914 (2003).
[CrossRef]

2002 (4)

D. Ferrarini, L. Vincetti, M. Zoboli, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314–1319 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341–348 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094–1096 (2002).
[CrossRef]

2001 (3)

E. Yablonovitch, “Photonic crystals: semiconductors of light,” Sci. Am. 285, 47–55 (2001).
[CrossRef]

St. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

M. Qiu, “Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,” Microwave Opt. Technol. Lett. 30, 327–330 (2001).
[CrossRef]

1999 (2)

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. Mater. Devices Syst. 5, 305–330 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Briks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

1998 (2)

J. C. Knight, T. A. Brinks, R. F. Cregan, P. St. J. Russell, J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron Lett. 34, 1347–1349 (1998).
[CrossRef]

D. Mogilevtsev, T. A. Briks, P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
[CrossRef]

1997 (1)

1996 (1)

A. German, A. Katzir, “Fatigue of mixed silver halide polycrystalline optical fibers,” J. Mater. Sci. 31, 5109–5112 (1996).
[CrossRef]

1993 (2)

1991 (1)

I. Paiss, F. Moser, A. Katzir, “Properties of silver halide core-clad fibers and the use of fiber bundle for thermal imaging,” Fiber Integr. Opt. 10, 275–290 (1991).
[CrossRef]

1988 (1)

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Briks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Barkou, S. E.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. Mater. Devices Syst. 5, 305–330 (1999).
[CrossRef]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Birks, T. A.

Bjarklev, A.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. Mater. Devices Syst. 5, 305–330 (1999).
[CrossRef]

Briks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Briks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

D. Mogilevtsev, T. A. Briks, P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
[CrossRef]

Brinks, T. A.

J. C. Knight, T. A. Brinks, R. F. Cregan, P. St. J. Russell, J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron Lett. 34, 1347–1349 (1998).
[CrossRef]

Broeng, J.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094–1096 (2002).
[CrossRef]

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. Mater. Devices Syst. 5, 305–330 (1999).
[CrossRef]

Bunimovich, D.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Briks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Brinks, R. F. Cregan, P. St. J. Russell, J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron Lett. 34, 1347–1349 (1998).
[CrossRef]

de Sandro, J. P.

J. C. Knight, T. A. Brinks, R. F. Cregan, P. St. J. Russell, J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron Lett. 34, 1347–1349 (1998).
[CrossRef]

Ephrat, P.

P. Ephrat, K. Roodenko, L. Nagli, A. Katzir, “Scanning near-field infrared microscopy based on tappered silver-halide probes,” Appl. Phys. Lett. 84, 637–639 (2004).
[CrossRef]

Ferrarini, D.

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Folken, J. R.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094–1096 (2002).
[CrossRef]

German, A.

A. German, A. Katzir, “Fatigue of mixed silver halide polycrystalline optical fibers,” J. Mater. Sci. 31, 5109–5112 (1996).
[CrossRef]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

St. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

Johnson, St. G.

Katzir, A.

P. Ephrat, K. Roodenko, L. Nagli, A. Katzir, “Scanning near-field infrared microscopy based on tappered silver-halide probes,” Appl. Phys. Lett. 84, 637–639 (2004).
[CrossRef]

E. Rave, K. Roodenko, A. Katzir, “Infrared photonic crystal fiber,” Appl. Phys. Lett. 83, 1912–1914 (2003).
[CrossRef]

A. German, A. Katzir, “Fatigue of mixed silver halide polycrystalline optical fibers,” J. Mater. Sci. 31, 5109–5112 (1996).
[CrossRef]

D. Bunimovich, A. Katzir, “Dielectric properties of silver halide and potassium halide crystals,” Appl. Opt. 32, 2045–2048 (1993).
[CrossRef] [PubMed]

I. Paiss, D. Bunimovich, A. Katzir, “Evanescent-wave infrared spectroscopy of solid materials using deformable silver-halide optical fibers,” Appl. Opt. 32, 5867–5871 (1993).
[CrossRef] [PubMed]

I. Paiss, F. Moser, A. Katzir, “Properties of silver halide core-clad fibers and the use of fiber bundle for thermal imaging,” Fiber Integr. Opt. 10, 275–290 (1991).
[CrossRef]

A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 823–833 (1988).
[CrossRef]

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Briks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Brinks, R. F. Cregan, P. St. J. Russell, J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron Lett. 34, 1347–1349 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Briks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. Mater. Devices Syst. 5, 305–330 (1999).
[CrossRef]

Mogilevtsev, D.

Mortensen, N. A.

N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341–348 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094–1096 (2002).
[CrossRef]

Moser, F.

I. Paiss, F. Moser, A. Katzir, “Properties of silver halide core-clad fibers and the use of fiber bundle for thermal imaging,” Fiber Integr. Opt. 10, 275–290 (1991).
[CrossRef]

Nagli, L.

P. Ephrat, K. Roodenko, L. Nagli, A. Katzir, “Scanning near-field infrared microscopy based on tappered silver-halide probes,” Appl. Phys. Lett. 84, 637–639 (2004).
[CrossRef]

Paiss, I.

I. Paiss, D. Bunimovich, A. Katzir, “Evanescent-wave infrared spectroscopy of solid materials using deformable silver-halide optical fibers,” Appl. Opt. 32, 5867–5871 (1993).
[CrossRef] [PubMed]

I. Paiss, F. Moser, A. Katzir, “Properties of silver halide core-clad fibers and the use of fiber bundle for thermal imaging,” Fiber Integr. Opt. 10, 275–290 (1991).
[CrossRef]

Qiu, M.

M. Qiu, “Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,” Microwave Opt. Technol. Lett. 30, 327–330 (2001).
[CrossRef]

Rave, E.

E. Rave, K. Roodenko, A. Katzir, “Infrared photonic crystal fiber,” Appl. Phys. Lett. 83, 1912–1914 (2003).
[CrossRef]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Briks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Roodenko, K.

P. Ephrat, K. Roodenko, L. Nagli, A. Katzir, “Scanning near-field infrared microscopy based on tappered silver-halide probes,” Appl. Phys. Lett. 84, 637–639 (2004).
[CrossRef]

E. Rave, K. Roodenko, A. Katzir, “Infrared photonic crystal fiber,” Appl. Phys. Lett. 83, 1912–1914 (2003).
[CrossRef]

Russell, P. St. J.

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Briks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

D. Mogilevtsev, T. A. Briks, P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
[CrossRef]

J. C. Knight, T. A. Brinks, R. F. Cregan, P. St. J. Russell, J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron Lett. 34, 1347–1349 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

Sa’ar, A.

Skovgaard, P. M. W.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094–1096 (2002).
[CrossRef]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Vincetti, L.

Yablonovitch, E.

E. Yablonovitch, “Photonic crystals: semiconductors of light,” Sci. Am. 285, 47–55 (2001).
[CrossRef]

Zoboli, M.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

P. Ephrat, K. Roodenko, L. Nagli, A. Katzir, “Scanning near-field infrared microscopy based on tappered silver-halide probes,” Appl. Phys. Lett. 84, 637–639 (2004).
[CrossRef]

E. Rave, K. Roodenko, A. Katzir, “Infrared photonic crystal fiber,” Appl. Phys. Lett. 83, 1912–1914 (2003).
[CrossRef]

Electron Lett. (1)

J. C. Knight, T. A. Brinks, R. F. Cregan, P. St. J. Russell, J. P. de Sandro, “Large mode area photonic crystal fiber,” Electron Lett. 34, 1347–1349 (1998).
[CrossRef]

Fiber Integr. Opt. (1)

I. Paiss, F. Moser, A. Katzir, “Properties of silver halide core-clad fibers and the use of fiber bundle for thermal imaging,” Fiber Integr. Opt. 10, 275–290 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094–1096 (2002).
[CrossRef]

J. Mater. Sci. (1)

A. German, A. Katzir, “Fatigue of mixed silver halide polycrystalline optical fibers,” J. Mater. Sci. 31, 5109–5112 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

Microwave Opt. Technol. Lett. (1)

M. Qiu, “Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,” Microwave Opt. Technol. Lett. 30, 327–330 (2001).
[CrossRef]

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Fiber Technol. Mater. Devices Syst. (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. Mater. Devices Syst. 5, 305–330 (1999).
[CrossRef]

Opt. Lett. (2)

Sci. Am. (1)

E. Yablonovitch, “Photonic crystals: semiconductors of light,” Sci. Am. 285, 47–55 (2001).
[CrossRef]

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Briks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic drawing of a configuration of a PBG-PCF; (b) Schematic drawing of a configuration of a TIR-PCF. This configuration was chosen for the silver halide PCF; the gray area indicates AgBr (n 1 = 2.16), whereas the inserted white circles represent AgCl fiberoptic elements (n 2 = 1.98). The chosen parameters were D = 1 mm, B = 50 μm, C = 110 μm.

Fig. 2
Fig. 2

Some of the lower-order modes of the PCF: Mode 1, Mode 3, Mode 7, and Mode 9, respectively.

Fig. 3
Fig. 3

Experimental setup for measuring the power distribution of a PCF by use of the knife-edge method.

Fig. 4
Fig. 4

(a) Radiation profile at the exit plane of the PCF; (b) thermal image of the exit plane of the PCF.

Fig. 5
Fig. 5

Fiberoptic evanescent wave spectroscopy of dimethyl sulfoxide (C2H6OS) measured with use of (a) a 10-cm segment of a PCF and (b) a 10-cm segment of an unclad AgClBr fiber with a 900-μm diameter.

Fig. 6
Fig. 6

Radiation transmittance through a PCF as a function of the input tip position. The core-clad transition is evident at the marked points.

Fig. 7
Fig. 7

Numerical aperture measurement of (a) an unclad AgClBr fiber with a 900-μm diameter and (b) a PCF.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2Hxx2+ 2Hxy2+ ln n2yHyx- Hxy+ω2n2μ0-β2Hx=0, 2Hyx2+ 2Hyy2+ ln n2xHyx- Hxy+ω2n2μ0-β2Hy=0.
NA=sin-1ncore2-nFSM21/2=3°.
Pout=Pin1-R210-αL/10.

Metrics